Конспект урока Шкала электромагнитных волн. Свойства электромагнитных волн разных диапазонов частот. Электромагнитные волны в природе и технике. Силы в природе - занимательная физика без формул Природа электромагнитных волн в вакууме


Все волновые процессы описываются с помощью однотипных математических уравнений. Свойства, проявляемые волнами, также одинаковы и присущи волнам любой природы.

К важнейшим волновым свойствам относятся интерференция и дифракция.

Интерференция – наложение двух волн, при котором происходит устойчивое во времени усиление волн в одних точках пространства и ослабление – в других. Интерференцией объясняются, например, радужные полосы на мыльных пузырях, поверхностях луж, на крыльях насекомых.

Необходимое условие образования и устойчивости интерференционной картины – когерентность волн, т.е. точное совпадение их частот и постоянство во времени амплитуд. Равенство амплитуд не обязательно, оно влияет только на контрастность картины.

Естественные источники волн не являются когерентными, для получения с их помощью интерференционной картины приходится прибегать к различным приемам – разделять волну от одного источника на части. Высокую степень когерентности имеет излучение лазеров.

Дифракция – явление, состоящее в огибании волной пространственных неоднородностей. Волна, таким образом, попадает в область геометрической тени. Для того, чтобы наблюдалась дифракция, необходимо, чтобы размеры неоднородностей были сравнимы с длиной волны: d ~ l . Так, волна от брошенного в воду камня испытает дифракцию на свае или камне, выступающих над поверхностью воды, но «не заметит» тонкого стебля осоки.

Интерференция и дифракция – типично волновые свойства. Верно и обратное: если наблюдаются эти явления, то объект можно с уверенностью считать волной. Эти утверждения оказались чрезвычайно плодотворными при изучении явлений микромира.

Электромагнитные волны в природе и технике.

Нагляднее всего мы представляем себе волны, когда говорим о волнах на воде. Однако даже их мы видим благодаря электромагнитным волнам – свету. В природе и технике это – самые распространенные волны благодаря очень широкому диапазону возможных частот и длин волн. Порождаются электромагнитные волны всегда электрическим зарядами, которые движутся неравномерно (т.е. с ускорением). Электромагнитные волны всегда поперечны.

Приведем шкалу электромагнитных волн , обозначив их происхождение. Границы участков шкалы достаточно условны, вопрос о том, к какому типу отнести волну, решается прежде всего ее природой.

· Радиоволны 10 км > l > 1 мм – порождаются переменным электрическим током. Диапазон 1 м > l > 1 мм называется микроволнами (волнами СВЧ).

· Оптические волны 1 мм > l > 1 нм – порождаются хаотическим тепловым движением молекул, переходами электронов внутри атомов.

· Рентгеновские волны 10 -8 м > l > 10 -12 м возникают при торможении электронов в веществе.

· Гамма-излучение l < 10 -11 м возникает при ядерных реакциях.

Оптический диапазон длин волн делится на инфракрасную (ИК-), видимую и ультрафиолетовую (УФ-) области . Человеческий глаз воспринимает узкую часть спектра: 0.78 мкм > l > 0.38 мкм. Лучше всего человек воспринимает l = 555 нм (желто-зеленый свет).

Автоволны.

Особый тип волн может существовать в активных средах или в средах, поддерживаемых энергетически. За счет внутренних источников среды или за счет подпитки энергией извне волна может распространяться без затухания и без изменения своих характеристик . Такие самоподдерживающиеся волны в нелинейных средах получили название автоволн (Р.В.Хохлов).

Автоволны были открыты при реакциях горения, при передаче возбуждения по нервным волокнам, мышцам, сетчатке глаза, при анализе численности биологических популяций и т.д.

Обязательным условием существования автоволн является нелинейность среды, т.е. зависимость свойств среды от характеристик волны. Волна как бы сама определяет количество энергии, необходимое для поддержания ее характеристик, и тем самым осуществляет обратную связь .

Лекция 10.

Законы микромира. Корпускулярно-волновой дуализм материи. Принцип дополнительности и проблемы причинности.

Гипотеза квантов энергии М.Планка.

Волновые свойства, присущие свету, были известны уже давно, с XVII века. Тем не менее лишь во 2-й половине ХIХ в. было окончательно доказано, что свет – это электромагнитная волна.

Однако существовал ряд явлений, которые не удавалось объяснить с позиций волновой природы света. Среди этих явлений – давление света , который легко демонстрируется на опыте, и фотоэффект , детально изученный П.Н.Лебедевым. Фотоэффект состоит в выбивании светом с поверхности металла электронов; появляется электрический ток, называемый фототоком. Закономерности фотоэффекта таковы, что вызывающее его излучение естественнее рассматривать как поток неких частиц, нежели как волну.

Еще одна проблема, которую не удавалось разрешить исходя из волновой теории света, получила у современников название «ультрафиолетовая катастрофа». Волновая теория предсказывает, что энергия теплового излучения (т.е. электромагнитной волны, испускаемой любым телом вследствие теплового движения его молекул) должна быть тем больше, чем больше его частота. Значит, в УФ диапазоне длин волн должно излучаться столько энергии, что тело потратит всю свою энергию на тепловое излучение. Эксперимент же показывал полное расхождение с классической волновой теорией. Реальное тепловое излучение зависит от частоты не монотонно, имеется частота, на которой интенсивность излучения максимальна, при высоких и низких частотах она стремится к 0. Следовательно, классическая волновая теория неадекватно описывала тепловое излучение.

В 1900 г. М.Планк выдвинул гипотезу, согласно которой нагретое тело излучает энергию не непрерывно, а отдельными порциями, которые в 1905 г. получили название кванты . Энергия одного кванта пропорциональна частоте излучения:

постоянная h = 6.63 10 -34 Дж с, ћ = ћ/2p = 1.055 10 -34 Дж с – постоянные Планка. (Заметим, что размерность ћ совпадает с размерностью момента импульса. Величину ћ называют иногда «квантом действия»).

Постоянная Планка – одна из фундаментальных физических констант. Наш мир таков, каков он есть, в частности, потому, что ћ имеет именно такое, а не какое-то иное значение.

Таким образом, волна, которая ранее считалась непрерывной, была представлена в дискретном виде. Эта гипотеза оказалась весьма плодотворной и позволила количественно описать тепловое излучение в полном соответствии с экспериментом. В развитие гипотезы Планка было предположено, что волна не только испускается, но и распространяется и поглощается в виде квантов. Однако было непонятно, является ли дискретный характер излучения свойством самого излучения или это – результат его взаимодействия с веществом. Первым, кто понял, что дискретность – неотъемлемое свойство излучения, - был Эйнштейн, применивший это представление при исследовании фотоэффекта.

Конспект урока по теме

«Шкала электромагнитных волн. Свойства электромагнитных волн разных диапазонов частот. Электромагнитные волны в природе и технике»

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие

Тип урока: урок формирования новых знаний

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Шкала

электромагнитных волн»

Ход урока

    Организационный момент

    Мотивация учебной и познавательной деятельности

Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Но знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

    Постановка темы и целей урока

Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Шкала электромагнитных волн. Свойства электромагнитных волн разных диапазонов частот. Электромагнитные волны в природе и технике».

Каждое излучение мы будем изучать по следующему обобщенному плану. Обобщенный план для изучения излучения:

1. Название диапазона

2. Частота

3. Длина волны

4. Кем был открыт

5. Источник

6. Индикатор

7. Применение

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

"Шкала электромагнитных излучений"

Название излучения

Частота

Длина волны

Кем было

открыто

Источник

Индикатор

Применение

Действие на человека

    Изложение нового материала

Длина электромагнитных волн бывает самой различной: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м ( - лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

Низкочастотное излучение возникает в диапазоне частот от 3 · 10 -3 до 3 10 5 Гц. Этому излучению соответствует длина волны от 10 13 - 10 5 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

Радиоволны занимают диапазон частот 3·10 5 - 3·10 11 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

Инфракрасное излучение занимает диапазон частот 3*10 11 - 3,85*10 14 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

Видимое излучение - единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 - 670 нм ( = 3,85 10 14 - 8 10 14 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет - не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределахдлин волн 3,8 ∙10 -7 - 3∙10 -9 м. (=8*10 14 - 3*10 16 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения - валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения ( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

 = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники,использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды,ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез витамина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -12 - 10 -8 м (частот 3*10 16 - 3-10 20 Гц). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изображения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙10 14 - 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7 - 3∙10 -9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году. Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названо гамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

    физическая природа всех излучений одинакова

    все излучения распространяются в вакууме с одинаковой скоростью, равной 3*10 8 м/с

    все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

5. Подведение итогов урока

В заключение урока учащиеся заканчивают работу над таблицей.

Вывод: Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

последний столбец (действие ЭМИ на человека) и

подготовить сообщение о применении ЭМИ

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды. Электромагнитной волной называют распространяющееся электромагнитное поле.

Переоценить значение электромагнитных волн в плане их применения в работе современной техники практически невозможно. Области применения: Радиопередачи. Телевещание Мобильнаясвязь Wi-fi и Bluetooth. Бытовая техника

Применение электромагнитных волн в быту Источниками низкочастотных излучений (0 — 3 к. Гц) являются все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Источники высокочастотных излучений (от 3 к. Гц до 300 ГГц) включают в себя функциональные передатчики — источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом).

Источником электромагнитного поля в жилых помещениях является разнообразная электротехника — холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др. , а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1 -10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера.

Рентгеновское излучение (синоним рентгеновские лучи) - это электромагнитное излучение с широким диапазоном длин волн (от 8· 10 -6 до 10 -12 см).

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Вывод Бурное развитие отраслей народного хозяйства привело к использованию во всех промышленных производствах, в медицине и в быту электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Шелепало К. Дмитрийчук В. 11 -А


Раздел: «СИЛЫ в ПРИРОДЕ - физика без формул»
Пособие для самообразования детей и взрослых
По материалам В.Григорьева и Г.Мякишева с дополнениями и пояснениями сайт

21 -я cтраница раздела

Глава четвертая
ЭЛЕКТРОМАГНИТНЫЕ СИЛЫ В ДЕЙСТВИИ

5. Электромагнитные волны в природе

5-1. Солнечные лучи

«Дороги мне клейкие, распускающиеся весной листочки, дорого голубое небо»,— говорил Иван Карамазов, один из героев, порожденных гением Достоевского.

Солнечный свет всегда был и остается для человека символом вечной юности, всего лучшего, что может быть в жизни. Чувствуется взволнованная радость человека, живущего под Солнцем, и в первом стихотворении четырехлетнего мальчика:

Пусть всегда будет Солнце,
Пусть всегда будет небо, Пусть всегда будет мама,
Пусть всегда буду я!

И в четверостишии замечательного поэта Дмитрия Кедрина:

Ты говоришь, что наш огонь погас.
Твердишь, что мы состарились с тобою,
Взгляни ж, как блещет небо голубое!


А ведь оно куда старее нас...

Темное царство, царство мрака — это не просто отсутствие света, а символ всего тяжелого, гнетущего душу человека.

Поклонение Солнцу — древнейший и прекраснейший культ человечества. Это сказочный бог Кон-Тики перуанцев, это божество древних египтян — Ра. На самой заре своего существования люди смогли понять, что Солнце — это жизнь. Мы уже давно знаем, что Солнце — не божество, а раскаленный шар, но благоговейное отношение к нему останется у человечества навсегда.

Даже физик, привыкший иметь дело с точной регистрацией явлений, испытывает такое чувство, будто бы он совершает кощунство, когда говорит, что солнечный свет — это электромагнитные волны определенной длины и ничего больше. Но это именно так, и мы с вами должны в нашей книге стараться говорить только об этом.

Как свет мы воспринимаем электромагнитные волны с длиной волны от 0,4 микрометра до 0,72 микрометра (а если красный свет очень яркий — то до 0,8 микрометра или немного более). Другие волны не вызывают зрительных впечатлений.

Длина световой волны очень мала. Представьте себе среднюю морскую волну, которая увеличилась настолько, что заняла одна весь Атлантический океан от Нью-Йорка в Америке до Лиссабона в Европе. Длина световой волны в том же увеличении лишь ненамного превысила бы ширину книжной страницы.

5-2. Газ и электромагнитные волны

Но мы прекрасно знаем, что есть электромагнитные волны совершенно иной длины волны. Есть километровые волны; есть и более короткие, чем видимый свет: ультрафиолет, рентгеновские лучи и др. Почему же природа сделала наш глаз (равно как и глаза животных) чувствительным именно к определенному, сравнительно узкому, интервалу длин волн?

На шкале электромагнитных волн видимый свет занимает крохотную полоску, зажатую между ультрафиолетом и инфракрасными лучами. По краям простираются широкие полосы радиоволн и гамма-лучей, испускаемых атомными ядрами.

Все эти волны несут энергию, и, казалось бы, могли бы с тем же успехом делать для нас то, что делает свет. Глаз мог бы быть чувствительным к ним.

Конечно, сразу же можно сказать, что подходят не все длины волн. Гамма-лучи и рентген излучаются заметно лишь при особых обстоятельствах, и вокруг нас их почти что нет. Да это и «слава богу». Они (особенно это относится к гамма-лучам) вызывают лучевую болезнь, так что человечество не долго могло бы наслаждаться картиной мира в гамма-лучах.

Длинные радиоволны были бы крайне неудобны. Они свободно огибают предметы метровой величины, подобно тому как морские волны огибают выступающие прибрежные камни, и мы не могли бы рассматривать предметы, видеть которые четко нам жизненно необходимо. Огибание волнами препятствий (дифракция) привело бы к тому, что мы видели бы мир «как рыба в тине».

Но есть еще инфракрасные (тепловые) лучи, способные нагревать тела, но невидимые нами. Они, казалось бы, с успехом могли бы заменить те длины волн, которые воспринимает глаз. Или, наконец, глаз мог бы приспособиться к ультрафиолету.

Что же, выбор узкой полоски длин волн, которую мы именуем видимым светом, именно на данном участке шкалы, совершенно случаен? Ведь Солнце испускает как видимый свет, так и ультрафиолетовые и инфракрасные лучи.

Нет и нет! Здесь далеко не случай. Прежде всего, максимум излучения электромагнитных волн Солнцем лежит как раз в желто-зеленой области видимого спектра. Но не это все же главное! Достаточно интенсивным будет излучение и в соседних областях спектра.

5-3. "Окна" в атмосфере

Мы живем на дне воздушного океана. Земля окружена атмосферой. Мы ее считаем прозрачной или почти прозрачной. И она

является таковой в действительности, но только для узкого участка длин волн (узкого участка спектра, как говорят в подобном случае физики), который как раз воспринимает наш глаз.

Это первое, оптическое «окно» в атмосфере. Кислород сильно поглощает ультрафиолет. Пары воды задерживают инфракрасное излучение. Длинные радиоволны отбрасываются назад, отражаясь от ионосферы.

Имеется еще только одно «радиоокно», прозрачное для волн от 0,25 сантиметра до примерно 30 метров. Но эти волны, как уже говорилось, плохо подходят для глаза, да и интенсивность их в солнечном спектре очень уж мала. Потребовался большой скачок в развитии радиотехники, вызванный усовершенствованием радиолокаторов во время второй мировой войны, чтобы научились уверенно улавливать эти волны.

Таким образом, в процессе борьбы за существование живые организмы приобрели орган, реагирующий как раз на те излучения, которые были наиболее интенсивны и очень хорошо подходили для своего назначения.

То, что максимум излучения Солнца точно приходится на середину «оптического окна», следует, вероятно, считать дополнительным подарком природы. (Природа вообще оказалась исключительно щедрой по отношению к нашей планете. Можно сказать, что она сделала все, или почти все, от нее зависящее, чтобы мы могли рождаться и жить счастливо. Она, конечно, не могла «предусмотреть» всех последствий своей щедрости, но дала нам разум и тем самым сделала ответственными нас самих за свою дальнейшую судьбу.) Без поразительного совпадения максимума излучения Солнца с максимумом прозрачности атмосферы можно было бы, вероятно, обойтись. Лучи Солнца рано или поздно все равно пробудили бы жизнь на Земле и смогли бы поддерживать ее в дальнейшем.

5-4. Голубое небо

Если вы читаете эту книгу не как пособие для самообразования, которое жалко бросать, поскольку уже затрачены время и деньги, а «с чувством, толком, расстановкой», то вы должны обратить внимание на очевидное, казалось бы, противоречие. Максимум излучения Солнца приходится на желто-зеленую часть спектра, а видим мы его желтым.

Виновата атмосфера. Она лучше пропускает длинноволновую часть спектра (желтую) и хуже коротковолновую. Поэтому зеленый свет оказывается сильно ослабленным.

Короткие длины волн вообще рассеиваются атмосферой во все стороны особенно интенсивно. Поэтому над нами «блещет небо голубое», а не желтое или красное. Не будь атмосферы совсем, не было бы над нами и привычного неба. Вместо него — черная бездна с ослепительным Солнцем. Пока это видели только космонавты.

Такое Солнце без защитной одежды губительно. Высоко в горах, когда есть еще чем дышать, Солнце становится невыносимо жгучим *): нельзя оставаться без одежды, а на снегу — без темных очков. Можно обжечь кожу и сетчатку глаз.

*) Ультрафиолетовое излучение верхними слоями атмосферы поглощается недостаточно.

Примечание SuperCook. Основной источник голубизны земного неба — это кислород атмосферы (азот бесцветен). Пыль в воздухе эту голубизну кислорода рассеивает, делая ее белесой. Чем чище воздух — тем ярче и голубее земное небо. Если бы на Земле была атмосфера из хлора — небо было бы зеленым.

5-5. Дары Солнца

Световые волны, падающие на Землю,— бесценный дар природы. Прежде всего, они дают тепло, а с ним и жизнь. Без них космический холод сковал бы Землю. Если бы количество всей энергии, потребляемой человечеством (топливо, падающая вода и ветер), увеличилось в 30 раз, то и тогда это составило бы всего лишь тысячную долю той энергии, которую бесплатно и без всяких хлопот поставляет нам Солнце.

К тому же главные виды топлива — каменный уголь и нефть — не что иное, как «консервированные солнечные лучи». Это остатки растительности, буйным цветом покрывавшей когда-то нашу планету, а возможно, отчасти, и животного мира.

Вода в турбинах электростанций была когда-то в виде пара поднята вверх энергией солнечных лучей. Именно солнечные лучи приводят в движение воздушные массы в нашей атмосфере.

Но это еще не все. Световые волны не только нагревают. Они пробуждают в веществе химическую активность, которую не способен вызвать простой нагрев. Выцветание тканей и загар — это результат химических реакций.

Важнейшие же реакции идут в «клейких весенних листочках», равно как, впрочем, в иглах хвои, листьях травы, деревьев и во многих микроорганизмах. В зеленом листе под Солнцем происходят необходимые для всей жизни на Земле процессы. Они дают нам пищу, они же дают нам кислород для дыхания.

Наш организм, подобно организмам других высших животных, не способен соединять чистые химические элементы в сложные цепи атомов — молекулы органических веществ. Наше дыхание непрерывно отравляет атмосферу. Потребляя жизненно необходимый кислород, мы выдыхаем углекислый газ (С02), связываем кислород и делаем воздух непригодным для дыхания. Его нужно непрерывно очищать. Это делают за нас растения на суше и микроорганизмы в океанах.

Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород. Углерод идет на постройку живых тканей растения, а чистый кислород возвращается в воздух. Пристраивая к углеродной цепочке атомы других элементов, извлекаемых корнями из земли, растения строят молекулы белков, жиров и углеводов: пищу для нас и для животных.

Все это происходит за счет энергии солнечных лучей. Причем здесь особенно важна не только сама энергия, а та форма, в которой она поступает. Фотосинтез (так называют этот процесс ученые) может протекать только под действием электромагнитных волн в определенном интервале спектра.

Мы не будем делать попыток рассказать о механизме фотосинтеза. Он не выяснен еще до конца. Когда это случится, для человечества, вероятно, наступит новая эра. Белки и другие органические вещества можно будет выращивать прямо в ретортах под голубым небосводом.

5-6. Давление света

Тончайшие химические реакции порождает свет. Одновременно он оказывается способным на простые механические деяния. Он давит на окружающие тела. Правда, и здесь свет проявляет известную деликатность. Световое давление очень невелико. На квадратный метр земной поверхности в ясный солнечный день приходится сила всего лишь около половины миллиграмма.

На весь земной шар действует довольно значительная сила, около 60 000 тонн, но она ничтожно мала по сравнению с гравитационной силой (в 1014 раз меньше).

Поэтому для обнаружения светового давления понадобился громадный талант П. Н. Лебедева. Им было измерено в начале нашего века давление не только на твердые тела, но и на газы.

Несмотря на то, что световое давление очень мало, действие его иногда можно наблюдать непосредственно простым глазом. Для этого нужно увидеть комету.

Уже давно было замечено, что хвост кометы, состоящий из мельчайших частиц, при движении ее вокруг Солнца всегда направлен в противоположную от Солнца сторону.

Частицы хвоста кометы столь малы, что силы светового давления оказываются сравнимыми или даже превосходящими силы притяжения их к Солнцу. Поэтому кометные хвосты отталкиваются от Солнца.

Нетрудно понять, почему это происходит. Сила тяготения пропорциональна массе и, следовательно, кубу линейных размеров тела. Солнечное же давление пропорционально величине поверхности и, значит, квадрату линейных размеров. При уменьшении частиц силы тяготения вследствие этого убывают быстрее, чем давление, и при достаточно малых размерах частиц становятся меньше сил светового давления.

Интересный случай произошел с американским спутником «Эхо». После выхода спутника на орбиту сжатым газом была наполнена большая полиэтиленовая оболочка. Образовался легкий шар диаметром около 30 метров. Неожиданно выяснилось, что за один оборот давлением солнечных лучей он смещается с орбиты на 5 метров. В результате вместо 20 лет, как было запланировано, спутник удержался на орбите меньше года.

Внутри звезд при температуре в несколько миллионов градусов давление электромагнитных волн должно достигать громадной величины. Надо полагать, что оно наряду с гравитационными силами и обычным давлением играет существенную роль во внутризвездных процессах.

Механизм возникновения светового давления сравнительно прост, и мы можем сказать о нем несколько слов. Электрическое поле падающей на вещество электромагнитной волны раскачивает электроны. Они начинают колебаться в поперечном направлении к направлению распространения волны. Но это еще само по себе не вызывает давления.

На пришедшие в движение электроны начинает действовать магнитное поле волны. Оно-то как раз и толкает электроны вдоль светового луча, что и приводит в конечном счете к появлению давления на кусок вещества в целом.

5-7. Вестники далеких миров

Мы знаем, как велики безграничные просторы Вселенной, в которой наша Галактика — это рядовое скопление звезд, а Солнце — типичная звезда, принадлежащая к числу желтых карликов. Лишь внутри солнечной системы обнаруживается привилегированное положение земного шара. Земля наиболее пригодна для жизни среди всех планет солнечной системы.

Нам известно не только расположение бесчисленных звездных миров, но и их состав. Они построены из тех же самых атомов, что и наша Земля. Мир един.

Свет является вестником далеких миров. Он источник жизни, он же источник наших знаний о Вселенной. «Как велик и прекрасен мир»,— говорят нам приходящие на Землю электромагнитные волны. «Говорят» только электромагнитные волны — гравитационные поля не дают сколько-нибудь равноценной информации о Вселенной.

Звезды и звездные скопления можно видеть простым глазом или в телескоп. Но откуда мы знаем, из чего они состоят? Здесь на помощь глазу приходит спектральный аппарат, «сортирующий» световые волны по длинам и рассылающий их по разным направлениям.

Нагретые твердые или жидкие тела испускают непрерывный спектр, т. е. всевозможные длины волн, начиная от длинных инфракрасных и кончая короткими ультрафиолетовыми.

Совсем иное дело изолированные или почти изолированные атомы раскаленных паров вещества. Их спектр — это частокол цветных линий разной яркости, разделенных широкими темными полосами. Каждой цветной линии соответствует электромагнитная волна определенной длины *).

*) Заметим, кстати, что вне нас в природе нет никаких красок, есть лишь волны различной длины.

Самое главное: атомы любого химического элемента дают свой спектр, непохожий на спектры атомов других элементов. Подобно отпечаткам пальцев у людей, линейчатые спектры атомов имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает найти преступника. Точно так же индивидуальность спектра дает в руки физиков возможность определить химический состав тела, не прикасаясь к нему, и не только тогда, когда оно лежит рядом, но и тогда, когда удалено на расстояния, которые даже свет проходит за миллионы лет. Надо лишь, чтобы тело ярко светилось **).

**) Химический состав Солнца и звезд определяется, собственно говоря, не по спектрам испускания, ибо это непрерывный спектр плотной фотосферы, а по спектрам поглощения атмосферой Солнца. Пары вещества поглощают наиболее интенсивно как раз те длины волн, которые они испускают в раскаленном состоянии. Темные линии поглощения на фоне непрерывного спектра позволяют установить состав небесных светил.

Те элементы, которые есть на Земле, были «найдены» также на Солнце и звездах. Гелий был даже раньше обнаружен на Солнце и уже затем найден на Земле.

Если излучающие атомы находятся в магнитном поле, то их спектр существенно меняется. Отдельные цветные полоски расщепляются на несколько линий. Именно это позволяет обнаружить магнитное поле звезд и оценить его величину.

Звезды так далеки, что мы не можем непосредственно заметить, движутся они или нет. Но приходящие от них световые волны приносят нам и эти сведения. Зависимость длины волны от скорости движения источника (эффект Допплера, о котором уже упоминалось ранее) позволяет судить не только о скоростях звезд, но и об их вращении.

Основная информация о вселенной поступает к нам через «оптическое окно» в атмосфере. С развитием радиоастрономии все больше и больше новых сведений о Галактике поступает через «радиоокно».

5-8. Откуда берутся электромагнитные волны

Примечание SuperCook: Единственный источник электромагнитных волн — это ускорение заряженных частиц. А такие ускорения могут происходить по совершенно разным причинам.

Мы знаем, или думаем, что знаем, как происходит рождение радиоволн во вселенной. Один из источников излучения был упомянут ранее вскользь: тепловое излучение, возникающее при торможении сталкивающихся заряженных частиц. Больший интерес представляет нетепловое радиоизлучение.

Видимый свет, инфракрасные и ультрафиолетовые лучи имеют почти исключительно тепловое происхождение. Высокая температура Солнца и других звезд — главная причина рождения электромагнитных волн. Звезды излучают также радиоволны и рентгеновские лучи, но интенсивность их очень мала.

При столкновениях заряженных частиц космических лучей с атомами земной атмосферы рождается коротковолновое излучение: гамма- и рентгеновские лучи. Правда, рождаясь в верхних слоях атмосферы, они почти целиком поглощаются, проходя сквозь ее толщу, и не доходят до поверхности Земли.

Радиоактивный распад атомных ядер — главный поставщик гамма-лучей у поверхности Земли. Здесь энергия черпается из самой богатой «энергетической кладовой» природы — атомного ядра.

Излучают электромагнитные волны и все живые существа. Прежде всего, как и любое нагретое тело,— инфракрасные лучи. Отдельные насекомые (например, светляки) и глубоководные рыбы испускают видимый свет. Здесь он рождается за счет химических реакций в светящихся органах (холодный свет).

Наконец, при химических реакциях, связанных с делением клеток растительных и животных тканей, излучается ультрафиолет. Это так называемые митогенетические лучи, открытые советским ученый Гурвичем. Одно время казалось, что они имеют большое значение в жизнедеятельности клеток, но впоследствии более точные опыты, насколько можно судить, породили здесь ряд сомнений.

5-9. Обоняние и электромагнитые волны

Нельзя сказать, что на органы чувств действует только видимый свет. Если вы поднесете руку к горячему чайнику или печке, то почувствуете тепло на расстоянии, наш организм способен воспринимать достаточно интенсивные потоки инфракрасных лучей. Правда, расположенные в коже чувствительные элементы реагируют непосредственно не на излучение, а на вызванное им нагревание. Может быть, иного действия на организм инфракрасные лучи не производят, но, может быть, это и не так. Окончательный ответ будет получен после решения загадки обоняния.

Каким образом человек, а в еще большей мере животные и насекомые чувствуют на значительном расстоянии по запаху присутствие тех или иных веществ? Напрашивается простой ответ: проникая в органы обоняния, молекулы вещества вызывают свое специфическое раздражение этих органов, которое мы воспринимаем как определенный запах.

Но как можно объяснить такой факт: пчелы слетаются на мед даже в том случае, когда он герметически закупорен в стеклянной банке. Или другой факт: некоторые насекомые чувствуют запах при столь малой концентрации вещества, что на каждую особь в среднем приходится менее одной молекулы.

В связи с этим выдвинута и разрабатывается гипотеза, согласно которой обоняние обусловлено электромагнитными волнами, более чем в 10 раз превышающими по длине волны видимого света. Эти волны испускаются при низкочастотных колебаниях молекул и воздействуют на органы обоняния. Любопытно, что данная теория неожиданным образом сближает наш глаз и нос. Тот и другой — это различного типа приемники и анализаторы электромагнитных волн. Так ли все это на самом деле, пока сказать довольно трудно.

5-10. Знаменательное "облачко"

Читатель, который на протяжении всей этой длинной главы уже, вероятно, устал удивляться бесконечному разнообразию проявлений электромагнетизма, проникающего даже в такую деликатную область, как парфюмерия, мог бы прийти к выводу, что нет на свете более благополучной теории, чем эта. Правда, некоторая заминка получилась при разговоре о строении атома. В остальном же электродинамика кажется безупречной и неуязвимой.

Такое ощущение огромного благополучия возникло у физиков в конце прошлого века, когда строение атома еще не было известно. Это ощущение было настолько полным, что знаменитый английский физик Томсон на рубеже двух веков имел, казалось, основание говорить о безоблачном научном горизонте, на котором его взор усматривал только два «маленьких облачка». Речь шла об опытах Майкельсона по измерению скорости света и о проблеме теплового излучения. Результаты опытов Майкельсона легли в основу теории относительности. О тепловом излучении поговорим подробно.

Физиков не удивляло, что все нагретые тела излучают электромагнитные волны. Нужно было только научиться количественно описывать это явление, опираясь на стройную систему максвелловских уравнений и законы механики Ньютона. Решая эту задачу, Рэлей и Джине получили удивительный и парадоксальный результат. Из теории с полной непреложностью следовало, например, что даже человеческое тело с температурой 36,6°С должно было бы ослепительно сверкать, неминуемо теряя при этом энергию и быстро охлаждаясь почти до абсолютного нуля.

Здесь не надо никаких тонких экспериментов, чтобы убедиться в явном конфликте, теории с действительностью. И вместе с тем, повторяем, вычисления Рэлея и Джинса не вызывали никаких сомнений. Они были прямым следствием самых общих утверждений теории. Никакие ухищрения не могли спасти положение.

То, что многократно проверенные законы электромагнетизма забастовали, как только их попытались применить к проблеме излучения коротких электромагнитных волн, настолько ошеломило физиков, что они стали говорить об «ультрафиолетовой катастрофе» *). Ее-то и имел в виду Томсон, говоря об одном из «облачков». Почему же только «облачко»? Да потому, что физикам в то время казалось, что проблема теплового излучения — маленький частный вопрос, не существенный на фоне общих гигантских достижений.

*) «Катастрофа» была названа ультрафиолетовой, так как неприятности были связаны с излучением очень коротких волн.

Однако этому «облачку» суждено было разрастаться и, превратившись в гигантскую тучу, заслонить весь научный горизонт, пролиться невиданным ливнем, который размыл весь фундамент классической физики. Но одновременно он же вызвал к жизни новое физическое миропонимание, которое мы сейчас кратко обозначаем двумя словами — «квантовая теория».

Прежде чем рассказывать о том новом, что в значительной мере перевернуло наши представления как об электромагнитных силах, так и о силах вообще, обратим наш взор назад и попробуем с той высоты, на которую мы поднялись, отчетливо представить себе, почему же электромагнитные силы играют в природе столь выдающуюся роль.


Аренда серверов. Хостинг сайтов. Доменные имена:


Новые сообщения C --- redtram:

Новые сообщения C --- thor: