Электрический ток в жидкостях. Движение зарядов, анионы катионы. Электрический ток в жидкостях: его происхождение, количественные и качественные характеристики Что называют электрическим током в жидкостях

Происхождение электрического тока (движение электрических зарядов) через раствор существенно отличается от движения электрических зарядов по металлическому проводнику.

Различие, прежде всего в том, что зарядоносителями в растворах являются не электроны, а ионы, т.е. сами атомы или молекулы, потерявшие или захватившие один или несколько электронов.

Естественно, это движение, так или иначе, сопровождается изменением свойств самого вещества.

Рассмотрим электрическую цепь, элементом которой является сосуд с раствором поваренной соли и с вставленными в него электродами любой формы из пластины. При подключении к источнику питания в цепи появляется ток, представляющий собой в растворе движение тяжелых заряженных частиц - ионов. Появление ионов уже означает возможность химического разложения раствора на два основных элемента - Na и Cl. Натрий, потерявший электрон, представляет собой положительно заряженный ион, движущийся к электроду, который подключен к отрицательному полюсу источника питания, электрической цепи. Хлор, “узурпировавший” электрон, представляет собой отрицательный ион.

Отрицательные ионы хлора движутся к электроду, который подключен к положительному полюсу источника питания эл. цепи.

Образование положительных и отрицательных ионов происходит вследствие самопроизвольного распада молекулы поваренной соли в водном растворе (электролитическая диссоциация). Движение ионов обусловлено напряжением, поданным на электроды, опущенные в раствор. Достигнув электродов, ионы забирают или отдают электроны, образуя соответственно молекулы Cl и Na. Подобные явления наблюдаются в растворах многих других веществ. Молекулы этих веществ, подобно молекулам поваренной соли, состоят из противоположно заряженных ионов, на которые они и распадаются в растворах. Количество распавшихся молекул, точнее, число ионов, характеризует электрическое сопротивление раствора.

Ещё раз подчеркнём, что происхождение электрического тока по цепи, элементом которой является раствор, вызывает перемещение вещества этого элемента электрической цепи, и, следовательно, изменение его химический свойств, в то время, как при прохождении электрического тока по металлическому проводнику никаких изменений в проводнике не происходит.

От чего зависит количество вещества, выделяющегося при электролизе на электродах? Впервые на этот вопрос ответил Фарадей. Фарадей показал экспериментально, что масса выделяемого вещества связана с силой тока и временем его протекания t соотношением (закон Фарадея):

Масса выделяющегося вещества при электролизе вещества прямо пропорциональна количеству прошедшего через электролит электричества и не зависит от других причин, кроме рода вещества.

Указанную закономерность можно проверить на следующих опытах. Нальём в несколько ванн один и тот же электролит, но разной концентрации. Опустим в ванны электроды, имеющие разную площадь, и расположим их в ванных на разных расстояниях. Соединим все ванны последовательно и пропустим через них ток. Тогда через каждую из ванн, очевидно, пройдёт одинаковое количество электричества. Взвесив катоды до и после опыта, мы обнаружим, что на всех катодах выделилось одинаковое количество вещества. Соединив все ванны параллельно и пропустив через них ток, можно убедиться, что количество вещества, выделившегося на катодах, прямо пропорционально количеству электричества, прошедшему через каждую из них. Наконец, соединив последовательно ванны с различными электролитами, легко установить, что количество выделившегося вещества зависит от рода этого вещества.

Величина, характеризующая зависимость количества выделяющегося при электролизе вещества от его рода, называется электрохимическим эквивалентом и обозначается буквой к.

Масса вещества, выделяющегося при электролизе, представляет собой общую массу всех разрядившихся на электроде ионов. Подвергая электролизу разные соли, можно на опыте установить количество электричества, которое должно пройти через электролит, чтобы выделился один килограмм - эквивалент данного вещества. Такие опыты впервые проделал Фарадей. Он нашел, что для выделения одного килограмм - эквивалента любого вещества при электролизе требуется одинаковые количества электричества, равные 9,65·107 к.

Количество электричества, необходимое для выделения при электролизе килограмм - эквивалента вещества, называется числом Фарадея и обозначается буквой F:

F = 9,65·107 к.

В электролите ион оказывается окруженным молекулами растворителя (воды), обладающими значительными дипольными моментами. Взаимодействуя с ионом, дипольные молекулы поворачиваются к нему своими концами, имеющими заряд, знак которого противоположен заряду иона, поэтому упорядочное движение иона в электрическом поле затрудняется, и подвижность ионов значительно уступает подвижности электронов проводимости в металле. Так как и концентрация ионов обычно не велика по сравнению с концентрацией электронов в металле, то электрическая проводимость у электролитов всегда существенно меньше электрической проводимости металлов.

Вследствие сильного нагревания током в электролитах достижимы лишь незначительные плотности тока, т.е. небольшие напряженности электрического поля. При повышении температуры электролита упорядоченная ориентация диполей растворителя ухудшается под влиянием усилившегося беспорядочного движения молекул, поэтому дипольная оболочка частично разрушается, подвижность ионов и проводимость раствора увеличивается. Зависимость удельной электрической проводимости от концентрации при неизменной температуре сложна. Если растворение возможно в любых пропорциях, то при некоторой концентрации электрическая проводимость имеет максимум. Причина этого такова: вероятность распада молекул на ионы пропорциональна числу молекул растворителя и числу молекул растворимого вещества в единице объёма. Но возможен и обратный процесс: (рекомбинация ионов в молекулы), вероятность которого пропорциональна квадрату числа пар ионов. Наконец, электрическая проводимость пропорциональна числу пар ионов в единице объёма. Поэтому, при малых концентрациях диссоциация полная, но общее число ионов мало. При очень больших концентрациях диссоциация слабая и число ионов также невелико. Если растворимость вещества ограничена, то обычно максимума электрической проводимости не наблюдается. При замораживании вязкость водного раствора резко возрастает, подвижность ионов резко уменьшается, и удельная электрическая проводимость падает в тысячу раз. При затвердевании же жидких металлов подвижность электронов и удельная электрическая проводимость почти не изменяется.

Электролиз широко применяется в различных электрохимических производствах. Важнейшие из них: электролитическое получение металлов из водных растворов их солей и из их расплавленных солей; электролиз хлористых солей; электролитическое окисление и восстановление; получение водорода электролизом; гальваностегия; гальванопластика; электрополировка. Методом рафинирования получают чистый металл, очищенный от примесей. Гальваностегия - покрытие металлических предметов другим слоем металла. Гальванопластикой - получение металлических копий с рельефных изображений каких-либо поверхностей. Электрополировка - выравнивание металлических поверхностей.

Всем знакомо определение электрического тока. Оно представляется как направленное движение заряженных частиц. Подобное движение в различных средах имеет принципиальные отличия. Как основной пример этого явления можно представить течение и распространение электрического тока в жидкостях . Такие явления характеризуются различными свойствами и серьезно отличаются от упорядоченного движения заряженных частиц, которое происходит в обычных условиях не под воздействием различных жидкостей.

Рисунок 1. Электрический ток в жидкостях. Автор24 - интернет-биржа студенческих работ

Формирование электрического тока в жидкостях

Несмотря на то, что процесс проводимости электрического тока осуществляется посредством металлических приборов (проводников), ток в жидкостях лежит в зависимости от движения заряженных ионов, которые приобрели или потеряли по некой определенной причине подобные атомы и молекулы. Показателем такого движения выступает изменение свойств определенного вещества, где проходят ионы. Таким образом, нужно опираться на основное определение электрического тока, чтобы сформировать специфическое понятие формирования тока в различных жидкостях. Определено, что разложение отрицательно заряженных ионов способствует движению в область источника тока с положительными значениями. Положительно заряженные ионы в таких процессах будут двигаться в противоположном направлении – к отрицательному источнику тока.

Жидкие проводники делятся на три основных типа:

  • полупроводники;
  • диэлектрики;
  • проводники.

Определение 1

Электролитическая диссоциация - процесс разложения молекул определенного раствора на отрицательные и положительные заряженные ионы.

Можно установить, что электроток в жидкостях может возникать после изменения состава и химического свойства используемых жидкостей. Это напрочь противоречит теории распространения электрического тока иными способами при использовании обычного металлического проводника.

Опыты Фарадея и электролиз

Течение электрического тока в жидкостях – это продукт процесса перемещения заряженных ионов. Проблемы, связанные с возникновение и распространением электротока в жидкостях, стали причиной изучения знаменитого ученого Майкла Фарадея. Он при помощи многочисленных практических исследований смог найти доказательства, что масса вещества, выделяемая в процессе электролиза, зависит от количества времени и электричества. При этом имеет значение время, в течение которого проводились эксперименты.

Также ученый смог выяснить, что в процессе электролиза при выделении определенного количества вещества необходимо одинаковое количество электрических зарядов. Это количество удалось точно установить и зафиксировать в постоянной величине, которая получила название числа Фарадея.

В жидкостях электрический ток имеет иные условия распространения. Он взаимодействует с молекулами воды. Они в значительной степени затрудняют все передвижения ионов, что не наблюдалось в опытах с использование обычного металлического проводника. Из этого следует, что образование тока при электролитических реакциях будет не столь большим. Однако при увеличении температуры раствора проводимость постепенно увеличивается. Это означает, что напряжение электрического тока растет. Также в процессе электролиза было замечено, что вероятность распада определенной молекулы на отрицательные или положительные заряды ионов увеличивается из-за большого числа молекул используемого вещества или растворителя. При насыщении раствора ионами сверх определенной нормы, происходит обратный процесс. Проводимость раствора вновь начинает снижаться.

В настоящее время процесс электролиза нашел свое применения во многих областях и сферах науки и на производстве. Промышленные предприятия его используют при получении или обработке металла. Электрохимические реакции участвуют в:

  • электролизе солей;
  • гальванике;
  • полировке поверхностей;
  • иных окислительно-восстановительных процессах.

Электрический ток в вакууме и жидкостях

Распространение электрического тока в жидкостях и иных средах представляет собой довольно сложный процесс, который имеет собственные характеристики, особенности и свойства. Дело в том, что в подобных средах полностью отсутствуют заряды в телах, поэтому их принято называть диэлектриками. Главной целью исследований стало то, чтобы создать такие условия, при которых атомы и молекулы могли бы начать свое движения и процесс образования электрического тока начался. Для этого принято использовать специальные механизмы или устройства. Основным элементом таких модульных устройств стали проводники в виде металлических пластин.

Для определения основных параметров тока необходимо воспользоваться известными теориями и формулами. Самым распространенным являются закон Ома. Он выступает в роли универсальной амперной характеристики, где осуществляется принцип зависимости тока от напряжения. Напомним, что напряжение измеряется в единице Ампер.

Для проведения опытов с водой и солью необходимо подготовить сосуд с соленой водой. Это даст практическое и визуальное представление о процессах, которые происходят при образовании электрического тока в жидкостях. Также установка должна содержать электроды прямоугольной формы и источники питания. Для полномасштабной подготовки к опытам нужно иметь амперную установку. Она поможет провести энергию от сети питания к электродам.

В роли проводников будут выступать металлические пластины. Их опускают в используемую жидкость, а затем подключается напряжение. Сразу начинается перемещение частиц. Оно проходит в хаотичном режиме. При возникновении магнитного поля между проводниками все процессе движения частиц упорядочиваются.

Ионы начинают меняться зарядами и объединяться. Таким образом, катоды становятся анодами, а аноды – катодами. В этом процессе необходимо также учитывать еще несколько важных факторов:

  • уровень диссоциации;
  • температура;
  • электрическое сопротивление;
  • использование переменного или постоянного тока.

В конце эксперимента происходит образование слоя соли на пластинах.

В отношении своих электрических свойств жидкости отличаются большим многообразием. Расплавленные металлы, как и металлы в твердом состоянии, имеют высокую электропроводность, связанную с большой концентрацией свободных электронов.

Многие жидкости, например чистая вода, спирт, керосин, являются хорошими диэлектриками, поскольку их молекулы электронейтральны и в них отсутствуют свободные носители заряда.

Электролиты. Особый класс жидкостей составляют так называемые электролиты, к которым относятся водные растворы неорганических кислот, солей и оснований, расплавы ионных кристаллов и т. д. Для электролитов характерно наличие высоких концентраций ионов, обусловливающих возможность прохождения электрического тока. Эти ионы возникают при плавлении и при растворении, когда под влиянием электрических полей молекул растворителя происходит разложение молекул растворяемого вещества на отдельные положительно и отрицательно заряженные ионы. Такой процесс называется электролитической диссоциацией.

Электролитическая диссоциация. Степень диссоциации а данного вещества, т. е. доля молекул растворенного вещества, распавшихся на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости растворителя. С увеличением температуры степень диссоциации растет. Ионы противоположных знаков могут рекомбинировать, объединяясь снова в нейтральные молекулы. При неизменных внешних условиях в растворе устанавливается динамическое равновесие, при котором процессы рекомбинации и диссоциации компенсируют друг друга.

Качественно зависимость степени диссоциации а от концентрации растворенного вещества можно установить с помощью следующих простых рассуждений. Если в единице объема содержится молекул растворенного вещества, то из них диссоциированы, а остальные не диссоциированы. Число элементарных актов диссоциации в единице объема раствора пропорционально числу нерасщепленных молекул и поэтому равно где А - коэффициент, зависящий от природы электролита и температуры. Число актов рекомбинации пропорционально числу соударений разноименных ионов, т. е. пропорционально числу как тех, так и других ионов. Поэтому оно равно где В - коэффициент, постоянный для данного вещества при определенной температуре.

В состоянии динамического равновесия

Отношение не зависит от концентрации Видно, что чем меньше концентрация раствора, тем а ближе к единице: в очень разбавленных растворах практически все молекулы растворенного вещества диссоциированы.

Чем выше диэлектрическая проницаемость растворителя, тем больше ослабляются ионные связи в молекулах растворенного вещества и, следовательно, тем больше степень диссоциации. Так, соляная кислота дает электролит с высокой электропроводностью при растворении в воде в то время как ее раствор в этиловом эфире очень плохо проводит электрический ток.

Необычные электролиты. Встречаются и весьма необычные электролиты. Например, электролитом является стекло, представляющее собой сильно переохлажденную жидкость, обладающую громадной вязкостью. При нагревании стекло размягчается и его вязкость сильно уменьшается. Присутствующие в стекле ионы натрия приобретают заметную подвижность, и становится возможным прохождение электрического тока, хотя при обычных температурах стекло является хорошим изолятором.

Рис. 106. Демонстрация электропроводности стекла при нагревании

Наглядной демонстрацией этого может служить опыт, схема которого показана на рис. 106. Стеклянная палочка включена в осветительную сеть через реостат Пока палочка холодная, ток в цепи ничтожный из-за высокого сопротивления стекла. Если палочку нагреть газовой горелкой до температуры 300-400 °С, то ее сопротивление упадет до нескольких десятков омов и нить лампочки Л раскалится. Теперь можно закоротить лампочку ключом К. При этом сопротивление цепи уменьшится и сила тока возрастет. В таких условиях палочка будет эффективно нагреваться электрическим током и раскаляться до яркого свечения, даже если убрать горелку.

Ионная проводимость. Прохождение электрического тока в электролите описывается законом Ома

Электрический ток в электролите возникает при сколь угодно малом приложенном напряжении.

Носителями заряда в электролите являются положительно и отрицательно заряженные ионы. Механизм электропроводности электролитов во многом сходен с описанным выше механизмом электропроводности газов. Основные отличия связаны с тем, что в газах сопротивление движению носителей заряда обусловлено главным образом их столкновениями с нейтральными атомами. В электролитах подвижность ионов обусловлена внутренним трением - вязкостью - при их движении в растворителе.

При повышении температуры проводимость электролитов, в противоположность металлам, увеличивается. Это связано с тем, что с ростом температуры возрастает степень диссоциации и уменьшается вязкость.

В отличие от электронной проводимости, характерной для металлов и полупроводников, где прохождение электрического тока не сопровождается каким бы то ни было изменением химического состава вещества, ионная проводимость связана с переносом вещества

и выделением на электродах веществ, входящих в состав электролитов. Такой процесс называется электролизом.

Электролиз. При выделении вещества на электроде уменьшается концентрация соответствующих ионов в примыкающей к электроду области электролита. Тем самым здесь нарушается динамическое равновесие между диссоциацией и рекомбинацией: именно здесь происходит разложение вещества в результате электролиза.

Электролиз впервые наблюдался в при разложении воды током от вольтова столба. Через несколько лет знаменитый химик Г. Дэви открыл натрий, выделив его путем электролиза из едкого натра. Количественные законы электролиза были экспериментально установлены М. Фарадеем в Их легко обосновать исходя из механизма явления электролиза.

Законы Фарадея. Каждый ион обладает электрическим зарядом, кратным элементарному заряду е. Другими словами, заряд иона равен , где - целое число, равное валентности соответствующего химического элемента или соединения. Пусть при прохождении тока на электроде выделилось ионов. Их заряд по абсолютной величине равен Положительные ионы достигают катода и их заряд нейтрализуется электронами, притекающими к катоду по проводам от источника тока. Отрицательные ионы подходят к аноду и такое же количество электронов уходит по проводам к источнику тока. При этом по замкнутой электрической цепи проходит заряд

Обозначим через массу вещества, выделившегося на одном из электродов, а через массу иона (атома или молекулы). Очевидно, что , следовательно, Умножив числитель и знаменатель этой дроби на постоянную Авогадро получим

где - атомная или молярная масса, постоянная Фарадея, определяемая выражением

Из (4) видно, что постоянная Фарадея имеет смысл «одного моля электричества», т. е. это суммарный электрический заряд одного моля элементарных зарядов:

Формула (3) содержит оба закона Фарадея. Она говорит о том, что масса выделившегося при электролизе вещества пропорциональна прошедшему по цепи заряду (первый закон Фарадея):

Коэффициент называется электрохимическим эквивалентом данного вещества и выражается в

килограммах на кулон Он имеет смысл обратной величины удельного заряда иона.

Электрохимический эквивалент к пропорционален химическому эквиваленту вещества (второй закон Фарадея).

Законы Фарадея и элементарный заряд. Поскольку во времена Фарадея представления об атомарной природе электричества еще не существовало, экспериментальное открытие законов электролиза было далеко не тривиальным. Напротив, именно законы Фарадея послужили по существу первым экспериментальным доказательством справедливости этих представлений.

Измерение на опыте постоянной Фарадея позволило в впервые получить числовую оценку значения элементарного заряда задолго до прямых измерений элементарного электрического заряда в опытах Милликена с масляными каплями. Замечательно, что идея атомарной структуры электричества получила недвусмысленное экспериментальное подтверждение в опытах по электролизу, выполненных в 30-е годы XIX века, когда даже идея атомарного строения вещества еще не разделялась всеми учеными. В знаменитой речи, произнесенной в Королевском обществе и посвященной памяти Фарадея, Гельмгольц таким образом комментировал это обстоятельство:

«Если мы признаем существование атомов химических элементов, то мы не можем избежать и дальнейшего заключения, что электричество, как положительное, так и отрицательное, разделено на определенные элементарные количества, которые ведут себя как атомы электричества».

Химические источники тока. Если какой-либо металл, например цинк, погрузить в воду, то некоторое количество положительных ионов цинка под влиянием полярных молекул воды начнет переходить из поверхностного слоя кристаллической решетки металла в воду. В результате цинк зарядится отрицательно, а вода положительно. На границе металла и воды образуется тонкий слой, называемый двойным электрическим слоем; в нем существует сильное электрическое поле, напряженность которого направлена от воды к металлу. Это поле препятствует дальнейшему переходу ионов цинка в воду, и в результате возникает динамическое равновесие, при котором среднее число ионов, приходящих из металла в воду, равно числу ионов, возвращающихся из воды в металл.

Динамическое равновесие установится и в том случае, если металл погрузить в водный раствор соли того же металла, например цинк в раствор цинкового купороса . В растворе соль диссоциирует на ионы Образовавшиеся при этом ионы цинка ничем не отличаются от ионов цинка, поступивших в раствор с электрода. Повышение концентрации ионов цинка в электролите облегчает переход этих ионов в металл из раствора и затрудняет

переход из металла в раствор. Поэтому в растворе цинкового купороса погруженный цинковый электрод хотя и заряжается отрицательно, но слабее, чем в чистой воде.

При погружении металла в раствор металл не всегда заряжается отрицательно. Например, если медный электрод погрузить в раствор медного купороса то ионы начнут из раствора осаждаться на электроде, заряжая его положительно. Напряженность поля в двойном электрическом слое в данном случае направлена от меди к раствору.

Таким образом, при погружении металла в воду или в водный раствор, содержащий ионы того же металла, на границе металла с раствором между ними возникает разность потенциалов. Знак и величина этой разности потенциалов зависит от типа металла (медь, цинк и т. от концентрации ионов в растворе и почти не зависит от температуры и давления.

Два электрода из разных металлов, погруженные в электролит, образуют гальванический элемент. Например, в элементе Вольта цинковый и медный электроды погружены в водный раствор серной кислоты. В первый момент раствор не содержит ни ионов цинка, ни ионов меди. Однако в дальнейшем эти ионы поступают в раствор с электродов и устанавливается динамическое равновесие. Пока электроды не соединены друг с другом проводом, потенциал электролита одинаков во всех точках, а потенциалы электродов отличаются от потенциала электролита благодаря образующимся Двойным слоям на их границе с электролитом. При этом электродный потенциал цинка равен -0,763 В, а меди Электродвижущая сила элемента Вольта, складывающаяся из этих скачков потенциалов, будет равна

Ток в цепи с гальваническим элементом. Если электроды гальванического элемента соединить проводом, то электроны по этому проводу будут переходить с отрицательного электрода (цинк) на положительный (медь), что нарушает динамическое равновесие между электродами и электролитом, в который они погружены. Ионы цинка начнут переходить с электрода в раствор, так чтобы поддерживать двойной электрический слой в прежнем состоянии с неизменным скачком потенциала между электродом и электролитом. Аналогично у медного электрода ионы меди начнут переходить из раствора и осаждаться на электроде. При этом около отрицательного электрода образуется недостаток ионов а у положительного - избыток таких ионов. Общее число ионов в растворе не изменится.

В результате описанных процессов в замкнутой цепи будет поддерживаться электрический ток, который в соединительном проводе создается движением электронов, а в электролите ионами. При прохождении электрического тока происходит постепенное растворение цинкового электрода и осаждение меди на положительном (медном)

электроде. Концентрация ионов увеличивается у цинкового электрода и уменьшается у медного.

Потенциал в цепи с гальваническим элементом. Описанная картина прохождения электрического тока в неоднородной замкнутой цепи, содержащей химический элемент, соответствует распределению потенциала вдоль цепи, схематически показанному на рис. 107. Во внешней цепи, т. е. в соединяющем электроды проводе потенциал плавно понижается от значения на положительном (медном) электроде А до значения на отрицательном (цинковом) электроде В в соответствии с законом Ома для однородного проводника. Во внутренней цепи, т. е. в электролите между электродами, потенциал плавно понижается от значения вблизи цинкового электрода до значения вблизи медного электрода. Если во внешней цепи ток идет от медного электрода к цинковому, то внутри электролита - от цинкового к медному. Скачки потенциалов в двойных электрических слоях создаются в результате действия сторонних (в данном случае химических) сил. Движение электрических зарядов в двойных слоях благодаря сторонним силам происходит против направления действия электрических сил.

Рис. 107. Распределение потенциала вдоль цепи, содержащей химический элемент

Наклонным участкам изменения потенциала на рис. 107 соответствуют электрические сопротивления внешнего и внутреннего участков замкнутой цепи. Суммарное падение потенциала вдоль этих участков равно сумме скачков потенциала в двойных слоях, т. е. электродвижущей силе элемента.

Прохождение электрического тока в гальваническом элементе осложняется побочными продуктами, выделяющимися на электродах, и появлением перепада концентрации в электролите. Об этих явлениях говорят как об электролитической поляризации. Например, в элементах Вольты при замыкании цепи положительные ионы движутся к медному электроду и осаждаются на нем. В результате через некоторое время медный электрод как бы заменяется водородным. Так как электродный потенциал водорода на 0,337 В ниже электродного потенциала меди, то ЭДС элемента уменьшается примерно на такую же величину. Кроме того, выделяющийся на медном электроде водород увеличивает внутреннее сопротивление элемента.

Для уменьшения вредного влияния водорода используются деполяризаторы - различные окислители. Например, в наиболее употребительном элементе Лекланше («сухие» батарейки)

положительным электродом служит графитовый стержень, окруженный спрессованной массой перекиси марганца и графита.

Аккумуляторы. Практически важной разновидностью гальванических элементов являются аккумуляторы, для которых после разрядки возможен обратный процесс зарядки с преобразованием электрической энергии в химическую. Вещества, расходуемые при получении электрического тока, восстанавливаются внутри аккумулятора путем электролиза.

Видно, что при зарядке аккумулятора повышается концентрация серной кислоты, что ведет к увеличению плотности электролита.

Таким образом, в процессе зарядки создается резкая асимметрия электродов: один становится свинцовым, другой - из перекиси свинца. Заряженный аккумулятор представляет собой гальванический элемент, способный служить источником тока.

При подключении к аккумулятору потребителей электрической энергии через цепь потечет электрический ток, направление которого противоположно зарядному току. Химические реакции идут в обратном направлении и аккумулятор возвращается в исходное состояние. Оба электрода будут покрыты слоем соли , а концентрация серной кислоты вернется к первоначальному значению.

У заряженного аккумулятора ЭДС составляет примерно 2,2 В. При разрядке она понижается до 1,85 В. Дальнейшую разрядку производить не рекомендуется, так как процесс образования сернокислого свинца становится необратимым и аккумулятор портится.

Максимальный заряд, который может отдать аккумулятор при разрядке, называется его емкостью. Емкость аккумулятора обычно

измеряется в ампер-часах. Она тем больше, чем больше поверхность пластин.

Применения электролиза. Электролиз используется в металлургии. Наиболее распространено электролитическое получение алюминия и чистой меди. С помощью электролиза можно создавать тонкие слои одних веществ на поверхности других с целью получения декоративных и защитных покрытий (никелирование, хромирование). Процесс получения отслаиваемых покрытий (гальванопластика) был разработан русским ученым Б. С. Якоби, применившим его для изготовления полых скульптур, украшающих Исаакиевский собор в Санкт-Петербурге.

Чем отличается физический механизм электропроводности в металлах и электролитах?

Поясните, почему степень диссоциации данного вещества зависит от диэлектрической проницаемости растворителя.

Объясните, почему в сильно разбавленных растворах электролита практически все молекулы растворенного вещества диссоциированы.

Поясните, в чем механизм электропроводности электролитов сходен с механизмом электропроводности газов. Почему при неизменных внешних условиях электрический ток пропорционален приложенному напряжению?

Какую роль при выводе закона электролиза (3) играет закон сохранения электрического заряда?

Поясните связь электрохимического эквивалента вещества с удельным зарядом его ионов.

Как можно на опыте определить отношение электрохимических эквивалентов разных веществ, если имеется несколько электролитических ванн, но нет приборов для измерения силы тока?

Каким образом явление электролиза можно использовать для создания счетчика расхода электроэнергии в сети постоянного тока?

Почему законы Фарадея можно рассматривать как экспериментальное доказательство представлений об атомарной природе электричества?

Какие процессы происходят при погружении металлических электродов в воду и в электролит, содержащий ионы этих металлов?

Опишите процессы, происходящие в электролите вблизи электродов гальванического элемента при прохождении тока.

Почему внутри гальванического элемента положительные ионы движутся от отрицательного (цинкового) электрода к положительному (медному) электроду? Каким образом в цепи возникает распределение потенциала, заставляющее ионы двигаться именно так?

Почему степень заряженности кислотного аккумулятора можно проверять при помощи ареометра, т. е. прибора для измерения плотности жидкости?

Чем в принципиальном отношении отличаются процессы в аккумуляторах от процессов в «сухих» батарейках?

Какая часть электрической энергии, затраченной в процессе зарядки аккумулятора с может быть использована при его разрядке, если в процессе зарядки аккумулятора на его клеммах поддерживалось напряжение

>>Физика: Электрический ток в жидкостях

Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.
Электролитическая диссоциация. При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Этот процесс называется электролитической диссоциацией .
Степень диссоциации , т. е. доля в растворенном веществе молекул, распавшихся на ионы, зависит от температуры, концентрации раствора и электрических свойств растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.
Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы - рекомбинироватъ . При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.
Ионная проводимость. Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы.
Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду - аноду, а положительные - к отрицательному - катоду. В результате установится электрический ток. Поскольку перенос заряда в водных растворах или расплавах электролитов осуществляется ионами, такую проводимость называют ионной .
Жидкости могут обладать и электронной проводимостью . Такой проводимостью обладают, например, жидкие металлы.
Электролиз. При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны (в химии это называется окислительной реакцией), а на катоде положительные ионы получают недостающие электроны (восстановительная реакция). Процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями, называют электролизом .
Применение электролиза. Электролиз широко применяют в технике для различных целей. Электролитическим путем покрывают поверхность одного металла тонким слоем другого (никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.
Если обеспечить хорошее отслаивание электролитического покрытия от поверхности, на которую осаждается металл (этого достигают, например, нанося на поверхность графит), то можно получить копию с рельефной поверхности.
В полиграфической промышленности такие копии (стереотипы) получают с матриц (оттиск набора на пластичном материале), для чего осаждают на матрицах толстый слой железа или другого вещества. Это позволяет воспроизвести набор в нужном количестве экземпляров. Если раньше тираж книги ограничивался числом оттисков, которые можно получить с одного набора (при печатании набор постепенно стирается), то сейчас использование стереотипов позволяет значительно увеличить тираж. Правда, в настоящее время с помощью электролиза получают стереотипы только для книг высококачественной печати.
Процесс получения отслаиваемых покрытий - гальванопластика - был разработан русским ученым Б. С. Якоби (1801-1874), который в 1836 г. применил этот способ для изготовления полых фигур для Исаакиевского собора в Санкт-Петербурге.
При помощи электролиза осуществляют очистку металлов от примесей. Так, полученную из руды неочищенную медь отливают в форме толстых листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.
При помощи электролиза получают алюминий из расплава бокситов. Именно этот способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту.
С помощью электролиза получают электронные платы, служащие основой всех электронных изделий. На диэлектрик наклеивают тонкую медную пластину, на которую наносят особой краской сложную картину соединяющих проводов. Затем пластину помещают в электролит, где вытравливаются незакрытые краской участки медного слоя. После этого краска смывается и на плате появляются детали микросхемы.
В растворах и расплавах электролитов свободные электрические заряды появляются за счет распада на ионы нейтральных молекул. Движение ионов в поле означает перенос вещества. Этот процесс широко используется на практике (электролиз).

???
1. Что называют электролитической диссоциацией?
2. Почему при прохождении тока по раствору электролита происходит перенос вещества, а при прохождении по металлическому проводнику перенос вещества не происходит?
3. В чем состоит сходство и различие собственной проводимости у полупроводников и у растворов электролитов?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Скачать календарно-тематическое планирование по физике , ответы на тесты, задания и ответы школьнику, книги и учебники , курсы учителю по физике для 10 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Электрический ток в газах

Носители заряда: электроны, положительные ионы, отрицательные ионы.

Носители заряда возникают в газе в результате ионизации: вследствие облучения газа, либо столкновений частиц нагретого газа друг с другом.

Ионизация электронным ударом.

A_{поля}=eEl

e=1,6\cdot 10^{19}Кл ;

E - направление поля;

l - длина свободного пробега между двумя последовательными столкновениями электрона с атомами газа.

A_{поля}=eEl\geq W - условие ионизации

W - энергия ионизации, т.е. энергия, необходимая для того, чтобы вырвать из атома электрон

Число электронов увеличивается в геометрической прогрессии, в результате возникает электронная лавина, а следовательно разряд в газе.

Электрический ток в жидкости

Жидкости так же, как и твердые тела могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы электролитов: кислот, щелочей, солей и расплавы металлов. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов.

Электролитическая диссоциация

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Например, CuSO_{4}\rightarrow Cu^{2+}+SO^{2-}_{4} .

Наряду с диссоциацией идет обратный процесс - рекомбинация , т.е. объединение ионов противоположных знаков в нейтральные молекулы.

Носителями электричества в растворах электролитов являются ионы. Такая проводимость называется ионной .

Электролиз

Если в ванну с раствором электролита поместить электроды и пустить ток, то отрицательные ионы будут двигаться к положительному электроду, а положительные - к отрицательному.

На аноде (положительном электроде) отрицательно заряженные ионы отдают лишние электроны (окислительная реакция), а на катоде (отрицательном электроде) положительные ионы получают недостающие электроны (восстановительная реакция).

Определение. Процесс выделения на электродах веществ, связанный с окислительно-восстановительными реакциями называется электролизом.

Законы Фарадея

I. Масса вещества, которая выделяется на электроде, прямо пропорциональна заряду, протекшему через электролит:

m=kq

k - электрохимический эквивалент вещества.

q=I\Delta t , тогда

m=kI\Delta t

k=\frac{1}{F}\frac{\mu}{n}

\frac{\mu}{n} - химический эквивалент вещества;

\mu - молярная масса;

n - валентность

Электрохимические эквиваленты веществ пропорциональны химическим.

F - постоянная Фарадея;