Явление полного отражения света используют в. Применение полного внутреннего отражения. Понятие о показателе преломления

(Волоконная оптика) Практическое применение явления полного отражения!

Применение полного отражения света 1. При образовании радуги 2. Для направления света по изогнотому пути а) Волоконно – оптические линии связи (ВОЛС) б) Оптико – волоконные светильники в) Для исследования внутренних органов человека (эндоскопы)

Схема образования радуги 1) сферическая капля, 2) внутреннее отражение, 3) первичная радуга, 4) преломление, 5) вторичная радуга, 6) входящий луч света, 7) ход лучей при формировании первичной радуги, 8) ход лучей при формировании вторичной радуги, 9) наблюдатель, 10-12) область формирования радуги.

Для направления света по изогно - тому пути применяются оптические волокона, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Из оптических волокон изготавливают кабели для волоконно – оптической связи Волоконно – оптическая связь применяется для телефонной связи и высокоскоростного Интернета

Оптико - волоконный кабель

Оптико – волоконный кабель

Преимущества ВОЛС Волоконно-оптические линии обладают рядом преимуществ перед проводными (медными) и радиорелейными системами связи: Малое затухание сигнала позволяет передавать информацию на значительно большее расстояние без использования усилителей. Высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи. Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены слабому электромагнитному воздействию. Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку». Подключиться к волокну и считать передаваемую информацию, не повредив его, невозможно. Высокая защищённость от межволоконных влияний. Излучение в одном волокне совершенно не влияет на сигнал в соседнем волокне. Пожаро - и взрывобезопасность при измерении физических и химических параметров Малые габариты и масса Недостатки ВОЛС Относительная хрупкость оптического волокна. При сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Сложная технология изготовления как самого волокна, так и компонентов ВОЛС. Сложность преобразования сигнала Относительная дороговизна оптического оконечного оборудования Замутнение волокна с течением времени вследствие старения.

Оптико – волоконная подсветка

Эндоскоп (от греч. ένδον - внутри и греч. σκοπέω - осмотр) - группа оптических приборов различного назначения. Различают медицинские и технические эндоскопы. Технические эндоскопы используются для осмотра труднодоступных полостей машин и оборудования при техническом обслуживании и оценке работоспособности (лопатки турбин, цилиндры двигателей внутреннего сгорания, оценка состояния трубопроводов и т. д.), кроме того, технические эндоскопы используются в системах безопасности для досмотра скрытых полостей (в том числе для досмотра бензобаков на таможне Медицинские эндоскопы используются в медицине для исследования и лечения полых внутренних органов человека (пищевод, желудок, бронхи, мочеиспускательный канал, мочевой пузырь, женские репродуктивные органы, почки, органы слуха), а также брюшной и других полостей тела.

Спасибо за внимание!)

Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Рис. 1. Преломление света

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α < γ)

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например: = ≈ 1,16

Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

Рис. 7. Полное внутреннее отражение

Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

= => = arcsin, для воды ≈ 49 0

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

СВ = ·∆t = АВ·sin α

В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

АD = ·∆t = АВ·sin γ

Разделив почленно выражения друг на друга, получим:

n - постоянная величина, которая не зависит от угла падения.

Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

Рис. 9. Задача ЕГЭ

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β = = , h - это высота жидкости, которую мы налили;

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Рис. 10. Волоконная оптика

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Edu.glavsprav.ru ().
  2. Nvtc.ee ().
  3. Raal100.narod.ru ().
  4. Optika.ucoz.ru ().

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.

Activity


Цифровой перископ

Перед вами техническая новинка.

Традиционный оптический канал существующих перископов заменён видеокамерами высокого разрешения и оптоволоконной связью. Информация с камер наружного наблюдения передается в режиме реального времени на широкоформатный дисплей в центральном посту.

Испытания проходят на борту подводной лодки SSN 767 Hampton типа Los-Angeles. Новая модель полностью меняет складывавшуюся десятилетиями практику работы с перископом. Теперь вахтенный офицер работает с установленными на штанге камерами, регулируя отображение на дисплее с помощью джойстика и клавиатуры.

Помимо дисплея в центральном посту изображение с перископа может выводиться на сколь угодно большое число дисплеев в любых помещениях лодки. Камеры дают возможность наблюдать одновременно за разными секторами горизонта, что значительно повышает скорость реакции вахты на изменения тактической обстановки на поверхности.


Чем объяснить "игру камней"? В ювелирном деле огранка камней подбирается так, что на каждой грани наблюдается полное отражение света.


Полным внутренним явлением объясняется явление миража

Мираж — оптическое явление в атмосфере: отражение света границей между резко разными по теплоте слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещенное относительно предмета.

Миражи различают на нижние, видимые под объектом, верхние, — над объектом, и боковые. Верхний мираж наблюдается над холодной земной поверхностью, нижний мираж — над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой. Боковой мираж иногда наблюдается у сильно нагретых стен или скал.


  • 7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
  • 8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
  • Электромагнитные колебания и волны.
  • 4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
  • 5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
  • 6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
  • 7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
  • Медицинская оптика
  • 1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
  • 5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
  • 6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
  • Квантовая физика.
  • 2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
  • 3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
  • 4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
  • 5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
  • 6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
  • 7. Применение люминесценции в медико-биологических исследованиях.
  • 8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
  • 9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
  • 10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
  • 11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
  • 12. Применение лазеров в медицине.
  • 13. Электронный парамагнитный резонанс. Эпр в медицине.
  • 14. Ядерный магнитный резонанс. Использование ямр в медицине.
  • Ионизирующие излучения
  • 1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
  • 3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
  • 4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
  • 5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
  • 6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
  • 8. Получение и применение радиоактивных препаратов для диагностики и лечения.
  • 9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
  • 10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
  • Биомеханика.
  • 1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
  • 2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
  • 3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
  • 4. Изотонический режим работы мышц. Статическая работа мышц.
  • 5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
  • 6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
  • 7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
  • 8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
  • 9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
  • Биофизика цитомембран и электрогенеза
  • 1. Явление диффузии. Уравнение Фика.
  • 2. Строение и модели клеточных мембран
  • 3. Физические свойства биологических мембран
  • 4. Концентрационный элемент и уравнение Нернста.
  • 5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
  • 6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
  • 7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
  • 8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
  • 9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
  • 10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
  • 11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
  • Биофизика рецепции.
  • 1. Классификация рецепторов.
  • 2. Строение рецепторов.
  • 3. Общие механизмы рецепции. Рецепторные потенциалы.
  • 4. Кодирование информации в органах чувств.
  • 5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
  • 6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
  • 7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
  • Биофизические аспекты экологии.
  • 1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
  • 2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
  • Элементы теории вероятности и математической статистики.
  • Свойства выборочного среднего
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.

    Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света - 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет - это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

    Как и электромагнитные волны, распространение света подчиняется тем же законам.

    Закон отражения. Угол падения равен углу отражения (α=β). Падающий луч АО, отраженный луч ОВ и перпендикуляр ОС, восставленный в точке падения, лежат в одной плоскости.

    Закон преломления. Луч падающий АО и преломленный ОВ лежат в одной плоскости с перпендикуляромCD, проведенным в точке падения луча к плоскости раздела двух сред. Отношение синусов угла падения а и угла преломления у постоянно для данных двух сред и называется показателем преломления второй среды по отношению к первой: .

    Законы отражения света учитываются при построении изображения предмета в зеркалах (плоском, вогнутом и выпуклом) и проявляются в зеркальном отражении в перископах, в прожекторах, автомобильных фарах и во многих других технических устройствах.Законы преломления света учитываются при построении изображения во всевозможных линзах, призмах и их совокупности (микроскоп, телескоп), а также в оптических приборах (бинокли, спектральные аппараты, фотоаппараты и проекционные аппараты). Если световой луч следует из оптически менее плотной среды (например, из воздуха;n возд. = 1) в оптически более плотную среду (например в стекло с показателем преломленияn ст. = 1,5), то на их границе произойдет частичное отражение и частичное преломление света.

    Отсюда следует, что , то есть синус угла преломленияgменьше, чем синус угла падения a, в 1,5 раза. А еслиsing

    Если же световой луч пустить из оптически более плотного стекла в оптически менее плотный воздух, то угол преломления окажется, наоборот, больше угла падения, g > a. Для обсуждаемого обратного хода луча закон преломления:

    следовательно, sing = 1,5sina; g >a

    Эта ситуация иллюстрируется схемой А на рисунке

    Если угол падения a увеличить до некоторого предельного значения a пр, то угол преломления g >aдостигает наибольшего значения g=90 0 . Преломленный луч скользит по границе раздела двух сред. При углах паденияa>a пр явление преломления не происходит, а вместо частичного отражения на границе раздела фаз происходитполное отражение света внутрь оптически более плотной среды, илиполное внутреннее отражение . Это оптическое явление составляет основу целого физико-технического направления, которое называетсяволоконная оптика.

    В медицине волоконная оптика нашла применение в эндоскопах - устройствах для осмотра внутренних полостей (например, желудка). Световод, представляющий собой жгут из большого числа тонких стеклянных волокон, помещенных в общую защитную оболочку, вводится в исследуемую полость. Часть волокон используется для организации освещения полости от источника света, расположенного вне тела пациента. Световод может использоваться и для передачи во внутреннюю полость лазерного излучения в лечебных целях.

    Полное внутреннее отражение происходит и в некоторых структурах сетчатки глаза.

    3. Оптическая система глаза. Недостатки зрения, методы их коррекции .

    Оптическая система глаза обеспечивает получение на сетчатке глаза уменьшенного действительного обратного (перевернутого) изображения. Если светопреломляющую систему глаза рассматривать как одну линзу, то общая оптическая сила этой системы получается как алгебраическая сумма следующих четырёх слагаемых:

    а) Роговица: D = +42,5 дптр

    б) Передняя камера: D от +2 до +4 дптр

    в) Хрусталик: D  const; от +19 до +33 дптр

    г) Стекловидное тело;D от –5 до –6 дптр.

    Благодаря тому, что оптическая сила хрусталика - величина переменная, суммарная оптическая сила глаза лежит в пределах от 49 до 73 дптр.

    Редуцированный глаз, как единая линза, обращён одной стороной - к воздуху, (абсолютный показатель преломления nвозд = 1), а другой - соприкасается с жидкостью, nж=1,336. Так что левый и правый фокусные расстояния не одинаковы; если переднее фокусное расстояние в среднем F1 = 17 мм, то заднее - F2 = 23 мм. Оптический центр системы - в глубине глаза на расстоянии 7,5 мм от наружной поверхности роговицы.

    Основной преломляющий элемент этой системы – роговица - имеет не сферическую, а более сложную форму преломляющих поверхностей, и это - хороший удар по сферической аберрации.

    Хрусталик меняет свою оптическую силу при сокращении или расслаблении цириальных мышц; этим достигается аккомодация глаза - его приспособление к фокусировке изображения на сетчатке как при рассматривании удалённых, так и близких предметов. Необходимое напряжение этих мышц даёт информацию о расстоянии до рассматриваемого предмета, даже если мы рассматриваем его одним глазом. Общее количество света, поступающее в глаз, регулируется радужной оболочкой. Она может быть разной по цвету, и потому люди бывают голубоглазые, кареглазые и т.п. Она управляется парой мышц. Имеется мышца, сужающая зрачки (циркулярная мышца), имеется мышца, его расширяющая (радиальная мышца).

    Рассмотрим далее особенности строения сетчатки. Её назначение - преобразовать оптическое изображение, полученное на её поверхности, в потоки электрических нервных импульсов, поступающих в мозг. Эти преобразования осуществляются клетками-фоторецепторами двух типов, получивших, в связи с особенностями своей формы, название колбочек и палочек.

    Колбочки-фоторецепторы дневного зрения. Обеспечивают цветовое зрение. Палочки - рецепторы сумеречного зрения. Каждый глаз человека содержит примерно 125*106 палочек и 5*106 колбочек, итого 130*106 фоторецепторов. Колбочки и палочки распределены по сетчатке очень неравномерно: на периферии размещены только палочки, чем ближе к области жёлтого пятна, тем больше встречается колбочек; в жёлтом пятне размещены только колбочки и их плотность (количество на единицу площади) очень велика, так что здесь эти клетки даже «изготавливаются» в малогабаритном варианте - они более мелкие, чем в других областях сетчатки.

    Область жёлтого пятна сетчатки - это область наилучшего зрения. Здесь мы фокусируем изображение предмета, если хотим разглядеть этот предмет особо тщательно.

    Плотность «упаковки» колбочек в жёлтом пятне определяет остроту нашего зрения. Плотность эта, в среднем, такова, что на отрезке длиной 5 мкм умещаются три колбочки. Для того, чтобы глаз различал две точки предмета, необходимо, чтобы между двумя засвеченными колбочками непременно находилась одна не засвеченная.

    Рефракция (преломление) света в глазе является нормальной, если изображение предмета, даваемое оптической системой глаза, ложится на наружные сегменты фоторецепторов, и при этом мышцы, управляющие кривизной хрусталика, расслаблены. Такая (нормальная) рефракция называетсяэмметропией.

    Отклонение от эмметропии – аметропия – встречается в двух разновидностях.Миопия (близорукость) – изображение фокусируется не на сетчатке, а перед ней, то есть преломление света в глазе происходит «слишком хорошо». Эта избыточность устранима рассеивающими очковыми линзами (оптическая сила отрицательная).

    Гиперметропия (дальнозоркость) – разновидность аметропии, при которой изображение формируется за сетчаткой. Чтобы вернуть изображение на сетчатку, надо «помочь» глазу собирающей очковой линзой (оптическая сила положительная). Говоря иначе, если оптическая сила глаза недостаточна, её можно увеличить дополнительным слагаемым - оптической силой собирающей очковой линзы.

    Появление контактных линз вместо классических очков поначалу воспринималось чуть ли не как революция.

    При обсуждении возможностей контактной линзы необходимо принять во внимание, что относительный показатель преломления на первой (по ходу луча) поверхности контактной линзы фактически равен абсолютному показателю преломления материала линзы, а на второй поверхности он равен отношению абсолютных показателей преломления роговицы и линзы.

    При внедрении любого изобретения рано или поздно обнаруживаются как достоинства, так и недостатки. Классические очки и контактные линзы, в их нынешнем виде, можно сопоставить следующим образом:

    Классические очки легко одевать и снимать, но не удобно носить;

    Контактные линзы удобно носить, но не удобно надевать и снимать.

    Лазерная коррекция зрения – это микрооперация на наружной поверхности роговицы. Напомним, что роговица - основной светопреломляющий элемент оптической системы глаза. Коррекция зрения достигается изменением кривизны наружной поверхности роговицы. Например, если сделать поверхность более плоской, (т.е. увеличить радиус кривизны R), то согласно формуле (4) оптическая силаDэтой поверхности уменьшится.

    Серьёзные проблемы со зрением возникают при отслоении сетчатки. В этих случаях нашёл применение метод закрепления сетчатки на предусмотренном природой месте с помощью фокусированного лазерного луча. Этот способ закрепления подобен точечной сварке металлов в технике. Сфокусированный луч создаёт малую зону повышенной температуры, в которой происходит «сварка» биологических тканей (в прямом и переносном смысле).

    Ретиналь - одна из двух основных компонент родопсина – это альдегид витамина А. С учётом того, что наружные сегменты фоторецепторов постоянно обновляются, полноценное обеспечение организма витамином А отвечает интересам поддержания зрительной системы в хорошем состоянии.

    4 . Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.

    Микроско́п - прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом. Представляет собой совокупность линз.

    Совокупность технологий изготовления и практического использования микроскопов называют микроскопией., В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

    Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

    К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании микроскопа находится также гнездо для зеркала или встроенный осветитель.

    предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;

    узел для крепления и вертикального светофильтров.

    Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза Максимальное полезное увеличение микроскопа, т. е. увеличение, с которым выявляются детали рассматриваемого предмета, определяется по формуле

    где d1 – максимальная разрешающая способность человеческого глаза, равная 0,3 мм; d – максимальная разрешающая способность оптической системы.

    "

    Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

    На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

    Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

    Рис. 1. Преломление света

    Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

    Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

    Рис. 2. Углы падения, преломления и отражения

    На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

    Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

    Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

    Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

    Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

    Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

    Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

    Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

    Рис. 3. Оптическая плотность среды (α > γ)

    Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

    Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

    Рис. 4. Оптическая плотность среды (α < γ)

    Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

    Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

    Рис. 5. Отличие оптической плотности сред

    Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

    Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

    Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

    Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

    Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

    Рис. 6. Таблица абсолютных показателей преломления для разных сред

    Несложно получить связь абсолютного и относительного показателя преломления сред.

    Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

    Например: = ≈ 1,16

    Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

    Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

    Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

    Рис. 7. Полное внутреннее отражение

    Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

    Величину предельного угла легко найти из закона преломления:

    = => = arcsin, для воды ≈ 49 0

    Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

    Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

    Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

    Рис. 8. Доказательство закона преломления света

    Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

    Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

    СВ = ·∆t = АВ·sin α

    В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

    АD = ·∆t = АВ·sin γ

    Разделив почленно выражения друг на друга, получим:

    n - постоянная величина, которая не зависит от угла падения.

    Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

    Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

    Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

    Рис. 9. Задача ЕГЭ

    Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

    tg β = = , h - это высота жидкости, которую мы налили;

    Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

    Рис. 10. Волоконная оптика

    Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

    Список литературы

    1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
    2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
    3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
    1. Edu.glavsprav.ru ().
    2. Nvtc.ee ().
    3. Raal100.narod.ru ().
    4. Optika.ucoz.ru ().

    Домашнее задание

    1. Дать определение преломления света.
    2. Назовите причину преломления света.
    3. Назовите самые востребованные применения полного внутреннего отражения.