Кто открыл радиацию. История открытия радиоактивности. История изучения радиоактивности

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций

Виды радиации Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия. Бета-частицы - это просто электроны. Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью. Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован. Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту. Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи). Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т. п.) – могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

Виды радиоактивности. 1 Естественная радиоактивность Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час. По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Источники естественной радиоактивности § Космическое излучение и солнечная радиация - это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник - атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах. § Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т. п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания. Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хоть здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается от использования опасных материалов.

Радон - это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7, 5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре. Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Техногенная радиоактивность возникает вследствие человеческой деятельности. Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд. Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения. И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Методы защиты от радиации. Временем - вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения. Расстоянием - благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мк. Р/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мк. Р/час. Веществом - необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит. Что касается главного источника облучения в помещениях - радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку. Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы

Зависимость радиологического эффекта от времени действия излучения При разных условиях облучения одна и та же доза оказывает разный биологический эффект. - При однократном кратковременном облучении организм за сравнительно короткое время (секунды, минуты) получает определенную дозу облучения. - Фракционированное, или прерывистое, облучение – облучение несколькими отдельными фракциями через различные промежутки времени. Продолжительность облучений и перерывов между ними могут быть различными (облучение может длиться секунды, часы; перерыв - сутки, месяцы). - Пролонгированное облучение - это непрерывное облучение в течение нескольких часов, суток, месяцев с постоянной или переменной мощностью дозы.

Категории последствий облучения § Детерминированные эффекты (соматические) - это неизбежные, закономерные патологические состояния, возникающие при облучении большими дозами, в отношении которых предполагается существование порога. Они подразделяются на: § ближайшие последствия (острая, подострая и хроническая лучевая болезнь, локальные лучевые повреждения: лучевые ожоги кожи, лучевая катаракта и стерилизация); § отдаленные последствия (радиосклеротические процессы, радиоканцерогенез, радиокатарактогенез и прочие). § Стохастические эффекты - это вредные биологические эффекты излучения, не имеющие дозового порога возникновения (в основном, малыми дозами). Они делятся на: § соматико-стохастические (лейкозы и опухоли различной локализации), § генетические (доминантные и рецессивные генные мутации и хромосомные аберрации); § тератогенные (умственная отсталость, другие уродства развития; возможен риск возникновения рака и генетических эффектов облучения плода).

Зарождение, а в последствии и становление радиологии как науки относится к концу ХIХ началу ХХ веков. В основу радиологии легли три открытия, можно сказать великих события, в научном мире.

Первое открытие.

Все началось с открытия, которое сделал руководитель кафедры физики, ректор Вюрцбургского университета, немецкий физик, профессор Вильгельм Конрад Рентген (годы жизни – 1845-1923 гг.) 8 ноября 1895 года. В этот день он открыл Х-лучи, которые в честь ученого в дальнейшем были названы рентгеновскими.

В этот день, уходя поздним вечером из лаборатории и, погасив свет, В.К. Рентген обратил внимание на зеленое свечение в темноте, исходившее от кристаллов бария платиносинеродистого. Оказалось, что круксова трубка (стеклянный баллон, внутри которого воздух при пониженном атмосферном давлении и два электрода для подвода напряжения), завернутая в черную бумагу, через которую не проникали катодные лучи, не была выключена, а рядом на столе лежали кристаллы бария. При отключении напряжения от круксовой трубки свечение солей бария прекращалось, а при включении возникало вновь. Видимые лучи не могли проникнуть сквозь черную бумагу, значит в трубке возникает какое-то неизвестное излучение. Так были открыты новые невидимые лучи, названные Х-лучами. Пятьдесят суток работал В.К.Рентген над изучением данного явления, подготовил доклад на 17 страницах и к нему приложил «рентгеновский» снимок своей руки.

6 января 1896 года известие об открытии В.К. Рентгена было распространено Лондонским телеграфом по всему миру.

А.Ф. Иоффе, проработавший с В.К.Рентгеном около 20 лет, писал: «Из того, что Рентген опубликовал в трех первых сообщениях, не может быть изменено ни одного слова…»

Рентгеновские лучи стали не только предметом глубокого изучения во всем мире, нашли практическое применение (рентгеновские снимки), но и послужили импульсом к обнаружению явления – естественной радио-активности.

Второе открытие.

Французский ученый физик, профессор Парижского музея естественной истории Анри Беккерель (1852-1908 гг.), изучая эффекты воздействия солнечного света на различные минералы, обнаружил, что соли урана испускают невидимые лучи. На завернутую в черную бумагу фотопластинку помещались соли урана, все это выставлялось на солнце, затем фотопластинка проявлялась и на ней появлялись очертания солей урана. Один из дней оказался пасмурным и А. Беккерель фотопластинку с солью урана, выложенной в форме креста, закрыл в стол. Через два дня, 1 марта 1896 года, день выдался солнечным. Движимый интуицией, А. Беккерель достал фотопластинку из ящика стола и решил проявить ее, не вынося на солнце. На фотопластинке отпечаталось очертание креста. Таким образом, было открыто, что уран самопроизвольно, независимо от солнечного излучения, испускает невидимые проникающие лучи, вызывающие засвечивание фотопластинки, и которые как было в дальнейшем выяснено представлены альфа-, бета- и гамма-излучения-ми. Тем самым А. Беккерелем (1 марта 1896 года) было открыто явление радиоактивности. В 1903 году ему была присуждена Нобелевская премия по физике. Но сам термин «радиоактивность» был предложен Марией Склодовской-Кюри.


Третье открытие .

Наиболее значительные достижения в области исследования радиоактивности связаны с именем польского ученого-химика Марией Склодовской (1867-1934 гг.) и ее мужем французским исследователем Пьером Кюри (1859-1906 гг.). В 1898 году, исследовав ряд химических элементов, Мария Кюри и независимо от нее немецкий ученый Г. Шмидт нашли, что источником «лучей Беккереля» является не только уран, но и торий. Мария и Пьер Кюри также обнаружили, что уран после излучения радиации превращается в другие химические элементы. Так были открыты новые радиоактивные элементы радий (означает лучистый) в июле 1898 года, и полоний (назван в честь родины Марии Склодовской-Кюри – Польши) в декабре 1898 года. Мария и Пьер Кюри внесли большой вклад в исследование природы радиоактивного излучения, обнаружив различия в действии альфа-, бета- и гамма–излучения на разные вещества.

Мария и Пьер Кюри, их дочь Ирен с мужем Фредериком Жолио (открывшими искусственную радиоактивность в 1934 году) внесли столь большой вклад в науку, что им было присуждено 5 Нобелевских премий.

В своей речи 6 июня 1905 года в Стокгольме Пьер Кюри сказал: «Легко понять, что в преступных руках радий может представить серьезную опасность, и встанет вопрос: выиграет ли человечество от познания тайн природы, достаточно ли оно созрело, чтобы ими пользоваться, или это познание обратиться ему во вред?…Я отношусь к числу тех, кто думает, что человечество извлечет больше пользы, чем вреда из новых открытий».

Английский физик Э. Резерфорд в 1899 году открыл a- и b- излучения, испускаемые при распаде радионуклидов. Он также создал теорию распада радиоактивных веществ и разработал теорию планетарной модели строения атома.

Открытие радиоактивности стало началом новой эпохи в физике. Дало возможность понять строение атома и атомных ядер, открыть законы ядерных превращений. Оно позволило человечеству получить доступ к энергии ядра через ядерные реакции, создавать искусственные радиоактивные изотопы и пр.

Но ученые столкнулись и с отрицательными эффектами действия ионизирующего и радиоактивного излучений.

В 1895 году физик В.Груббе, работая с «рентгеновскими» Х-лучами, получил сильные ожоги руки. К 1914 году в литературных источниках описаны 114 случаев рентгеновского рака. А.Беккерель в течение 6 часов носил в кармане жилета ампулу с барием хлористым и радием, получил лучевой ожог. Однажды А.Беккерель сказал: «Я очень люблю радий, но я на него в обиде». И это потому, что на руках у него имелись незаживающие язвы. Пьер Кюри получил от радия ожог предплечья. Ожоги были и на руках Марии Кюри. В этот период, А.Беккерель и Пьер Кюри опубликовали статью «Физиологи-ческое действие лучей радия», в которой описывалось действие лучей радия на кожу. По данным зарубежной литературы 336 человек, работавших с радиоактивными материалами в то время, умерли в результате облучения. К 1959 году было известно уже о 359 специалистах-радиологах (из них 13 русских и советских), погибших от лучевого рака кожи или лейкемии. Мария, ее дочь Ирен с мужем Фредериком Жолио умерли от лучевых поражений.

Во время первой мировой войны Мария Кюри оборудовала 220 рентгеновских установок, работала на них и обучала персонал. Умерла от болезни – острая злокачественная анемия .

Пьер Кюри погиб раньше (1906 г.) в катастрофе под колесами фургона, но учеными доказано, что и он бы умер от лучевой патологии.

В отличие от ионизирующего рентгеновского излучения, сразу получившего применение в медицине, изучение и использование радиоактивных веществ шло медленнее.

К 1903 году Пьер Кюри с учеными медиками определили, что радий оказывает лечебное действие на «волчанку» и некоторые формы рака. Эти данные были подтверждены в 1903 году работами Семена Викторовича Гольдберга и Ефима Семеновича Лондона. А первым вкладом российских ученых в радиационную биологию была работа 1898 года Ивана Рамазовича Тарханова, который установил наличие различных реакций на облучение у лягушек и насекомых. В 1903 году Хейнеке (исследовал действие рентгеновских лучей на мышей) впервые описал анемию и лейкопению, а также обратил внимание на поражение органов кроветворения (атрофия селезенки).

В 1905 году Корнике установил торможение клеточного деления под влиянием ионизирующего излучения, а ученые Бергонье и Трибондо обнаружили различие чувствительности разных клеток к облучению.

Первоначально исследования были направлены на решение проблем медицинской радиологии. По мере роста и развития материальной базы для радиобиологических исследований расширялся фронт работ по использованию радиации в биологии и сельском хозяйстве. В 1925-1935 годах широко получила развитие радиационная генетика. В 1925 году Г.А. Надсон и Г.Ф.Филиппов в опытах на дрожжах и плесневых грибах обнаружили действие ионизирующих излучений на генетический аппарат клетки, сопровождающегося наследственной передачей вновь приобретенных признаков. Л.Н. Делоне (1932 г.), А.А. Сапегина (1934 г.) использовали рентгеномутации для селекции растений. Под руководством П.Ф. Рокицкого в 1934-1935 годах были проведены работы по радиогенетике животных.

Интенсивное развитие исследований в радиобиологии началось после применения атомного оружия США в Японии в 1945 году, что поставило неотложные задачи по разработке способов противолучевой защиты и лечения радиационных поражений, а также изучения радиобиологического эффекта и патогенеза лучевой болезни.

Испытание первой советской атомной бомбы было произведено 29 августа 1949 года. 12 сентября 1954 года впервые в мире было испытано термоядерное оружие, а 22 ноября 1955 года – водородная бомба.

Поэтому с середины 40-х годов ХХ века в мире начали создаваться крупные научно-исследовательские центры. В Советском Союзе крупные исследовательские центры были созданы в Москве, Ленинграде, Киеве, Минске, Алма-Ате, Новосибирске, Свердловске.

Биофизическая лаборатория, созданная в 1948 году в Московской сельскохозяйственной академии имени К.А. Тимирязева, первая в стране начала работу по изучению закономерностей поведения радиоактивных продуктов деления в звене миграции: почва - растения и изучению метаболизма осколков деления в организме животных. Значительное место в общей и сельскохозяйственной радиоэкологии заняли исследования по изучению миграции радиоактивных продуктов ядерного деления в цепи: корм – сельскохозяйственные животные – продукция животноводства. В первые годы испытания ядерного оружия были получены данные, что молоко, мясо и продукты их переработки являются важнейшими источниками поступления радионуклидов в организм человека.

Особую актуальность эти данные приобрели в связи с мирным применением атома. 27 июня 1954 года была пущена в действие первая в мире атомная электростанция в г. Обнинске.

По данным иностранных источников, первой в мире АЭС была атомная электростанция в Колдер Холле (Великобритания)1956 г.

В настоящее время в мире на АЭС насчитывается 437 действующих и 38 строящихся энергоблоков, соответственно в России – 30 и 3, США – 109 и 1, Японии – 51 и 3 , Франции – 56 и 4 и пр. Средний срок службы атомного реактора 30-50 лет. К 2010 году из эксплуатации надо вывести более 200 реакторов. Это огромная проблема и задача, стоящая перед мировой общественностью.

В Республике Беларусь Президентом А.М. Лукашенко с 1999 года на десять лет наложен мораторий на строительство АЭС в Дубровенском районе Витебской области.

В настоящее время ионизирующее излучение и радиоактивные источники излучения широко применяются в ветеринарии. Радионуклиды применяют как индикаторы в исследовательских работах в области физиологии и биохимии животных, в диагностики и лечении больных животных и пр.

Большой вклад в развитие ветеринарной радиологии внесли ученые

Г.Г.Воккен, В.А.Киршин, А.Д.Белов, А.М.Кузин, В.А.Бударков, Р.Г.Ильязов и др.

Образование

Кто открыл явление радиоактивности и как это произошло?

16 июня 2016

В статье рассказывается о том, кто открыл явление радиоактивности, когда это произошло и при каких обстоятельствах.

Радиоактивность

Современный мир и промышленность уже вряд ли смогут обойтись без атомной энергетики. Ядерные реакторы питают подводные лодки, обеспечивают электричеством целые города, а специальные источники энергии, основанные на радиоактивном распаде, устанавливают на искусственные спутники и роботов, которые изучают другие планеты.

Радиоактивность была открыта в самом конце XIX века. Впрочем, как и многие другие важнейшие открытия в различных областях науки. Но кто из ученых впервые открыл явление радиоактивности и как это произошло? Об этом мы и поговорим в данной статье.

Открытие

Это очень важное для науки событие произошло в 1896 году и совершил его А. Беккерель при изучении возможной связи люминесценции и недавно открытых так называемых рентгеновских лучей.

По воспоминаниям самого Беккереля, ему пришла мысль о том, что, может быть, любая люминесценция также сопровождается рентгеновскими лучами? Для того чтобы проверить свою догадку, он использовал несколько химических соединений, в том числе и одну из солей урана, которая светилась в темноте. Далее, подержав ее под солнечными лучами, ученый завернул соль в темную бумагу и убрал в шкаф на фотопластинку, которая, в свою очередь, также была упакована в светонепроницаемую обертку. Позже, проявив ее, Беккерель заменил точное изображение куска соли. Но поскольку люминесценция преодолеть бумагу не могла, то значит, засветило пластинку именно рентгеновское излучение. Так что теперь мы знаем, кто впервые открыл явление радиоактивности. Правда, сам ученый тогда еще не до конца понимал, какое открытие совершил. Но обо всем по порядку.

Заседание Академии наук

Чуть позже в том же году, на одном из заседаний в Академии наук Парижа, Беккерель сделал доклад «Об излучении, производимом фосфоресценцией». Но спустя некоторое время в его теорию и выводы пришлось внести корректировки. Так, во время одного из опытов, не дождавшись хорошей и солнечной погоды, ученый положил на фотопластинку соединение урана, которое светом не облучалось. Тем не менее на пластинке все равно отразилась четкая его структура.

Второго марта того же года Беккерель представил заседанию Академии наук новую работу, в которой рассказывалось о радиации испускаемой фосфоресцирующими телами. Теперь нам известно, кто из ученых открыл явление радиоактивности.

Дальнейшие опыты

Занимаясь дальнейшими исследованиями явления радиоактивности, Беккерель перепробовал много веществ, в том числе и металлический уран. И всякий раз на фотопластинке неизменно оставались следы. А поместив между источником излучения и пластинкой металлический крестик, ученый получил, как сейчас сказали бы, его рентгеновский снимок. Так что мы разобрали вопрос о том, кто открыл явление радиоактивности.

Именно тогда стало понятно, что Беккерель открыл совершенно новый тип невидимых лучей, которые способны проходить сквозь любые предметы, но в то же время они не являлись рентгеновскими.

Также было выяснено то, что интенсивность радиоактивного излучения зависит от количества самого урана в химических препаратах, а не от их видов. Именно Беккерель поделился своими научными достижениями и теориями с супругами Пьером и Марией Кюри, которые впоследствии установили радиоактивность, испускаемую торием, и открыли два совершенно новых элемента, позже названых полонием и радием. И при разборе вопроса «кто открыл явление радиоактивности» часто многие ошибочно приписывают эту заслугу супругам Кюри.

Влияние на живые организмы

Когда стало известно, что радиоактивное излучение испускают все соединения урана, Беккерель постепенно вернулся к изучению люминофора. Но он успел сделать еще одно важнейшее открытие - влияние радиоактивных лучей на биологические организмы. Так что Беккерель был не только первым, кто открыл явление радиоактивности, но и тем, кто установил его влияние на живых существ.

Для одной из лекций он одолжил радиоактивное вещество у супругов Кюри и положил его в карман. После лекции, вернув его владельцам, ученый заметил сильное покраснение кожи, которое имело форму пробирки. Пьер Кюри, выслушав его догадки, решился на эксперимент - в течении десяти часов носил привязанную к руке пробирку, содержащую радий. И в итоге получил сильнейшую язву, которая не заживала несколько месяцев.

Так что мы разобрали вопрос о том, кто из ученых впервые открыл явление радиоактивности. Именно так было открыто влияние радиоактивности на биологические организмы. Но несмотря на это, супруги Кюри, кстати, продолжали заниматься изучением радиационных материалов, а Мария Кюри погибла именно от лучевой болезни. Ее личные вещи до сих пор содержатся в специальном освинцованном хранилище, поскольку накопленная ими доза радиации почти сотню лет назад до сих пор остается слишком опасной.

В статье рассказывается о том, кто открыл явление радиоактивности, когда это произошло и при каких обстоятельствах.

Радиоактивность

Современный мир и промышленность уже вряд ли смогут обойтись без атомной энергетики. Ядерные реакторы питают подводные лодки, обеспечивают электричеством целые города, а специальные источники энергии, основанные на устанавливают на искусственные спутники и роботов, которые изучают другие планеты.

Радиоактивность была открыта в самом конце XIX века. Впрочем, как и многие другие важнейшие открытия в различных областях науки. Но кто из ученых впервые открыл явление радиоактивности и как это произошло? Об этом мы и поговорим в данной статье.

Открытие

Это очень важное для науки событие произошло в 1896 году и совершил его А. Беккерель при изучении возможной связи люминесценции и недавно открытых так называемых рентгеновских лучей.

По воспоминаниям самого Беккереля, ему пришла мысль о том, что, может быть, любая люминесценция также сопровождается рентгеновскими лучами? Для того чтобы проверить свою догадку, он использовал несколько химических соединений, в том числе и одну из солей урана, которая светилась в темноте. Далее, подержав ее под солнечными лучами, ученый завернул соль в темную бумагу и убрал в шкаф на фотопластинку, которая, в свою очередь, также была упакована в светонепроницаемую обертку. Позже, проявив ее, Беккерель заменил точное изображение куска соли. Но поскольку люминесценция преодолеть бумагу не могла, то значит, засветило пластинку именно рентгеновское излучение. Так что теперь мы знаем, кто впервые открыл явление радиоактивности. Правда, сам ученый тогда еще не до конца понимал, какое открытие совершил. Но обо всем по порядку.

Заседание Академии наук

Чуть позже в том же году, на одном из заседаний в Академии наук Парижа, Беккерель сделал доклад «Об излучении, производимом фосфоресценцией». Но спустя некоторое время в его теорию и выводы пришлось внести корректировки. Так, во время одного из опытов, не дождавшись хорошей и солнечной погоды, ученый положил на фотопластинку соединение урана, которое светом не облучалось. Тем не менее на пластинке все равно отразилась четкая его структура.

Второго марта того же года Беккерель представил заседанию Академии наук новую работу, в которой рассказывалось о радиации испускаемой фосфоресцирующими телами. Теперь нам известно, кто из ученых открыл явление радиоактивности.

Дальнейшие опыты

Занимаясь дальнейшими исследованиями явления радиоактивности, Беккерель перепробовал много веществ, в том числе и металлический уран. И всякий раз на фотопластинке неизменно оставались следы. А поместив между источником излучения и пластинкой металлический крестик, ученый получил, как сейчас сказали бы, его рентгеновский снимок. Так что мы разобрали вопрос о том, кто открыл явление радиоактивности.

Именно тогда стало понятно, что Беккерель открыл совершенно новый тип невидимых лучей, которые способны проходить сквозь любые предметы, но в то же время они не являлись рентгеновскими.

Также было выяснено то, что интенсивность зависит от количества самого урана в химических препаратах, а не от их видов. Именно Беккерель поделился своими научными достижениями и теориями с супругами Пьером и Марией Кюри, которые впоследствии установили радиоактивность, испускаемую торием, и открыли два совершенно новых элемента, позже названых полонием и радием. И при разборе вопроса «кто открыл явление радиоактивности» часто многие ошибочно приписывают эту заслугу супругам Кюри.

Влияние на живые организмы

Когда стало известно, что испускают все соединения урана, Беккерель постепенно вернулся к изучению люминофора. Но он успел сделать еще одно важнейшее открытие - влияние радиоактивных лучей на биологические организмы. Так что Беккерель был не только первым, кто открыл явление радиоактивности, но и тем, кто установил его влияние на живых существ.

Для одной из лекций он одолжил радиоактивное вещество у супругов Кюри и положил его в карман. После лекции, вернув его владельцам, ученый заметил сильное покраснение кожи, которое имело форму пробирки. выслушав его догадки, решился на эксперимент - в течении десяти часов носил привязанную к руке пробирку, содержащую радий. И в итоге получил сильнейшую язву, которая не заживала несколько месяцев.

Так что мы разобрали вопрос о том, кто из ученых впервые открыл явление радиоактивности. Именно так было открыто влияние радиоактивности на биологические организмы. Но несмотря на это, супруги Кюри, кстати, продолжали заниматься изучением радиационных материалов, а погибла именно от лучевой болезни. Ее личные вещи до сих пор содержатся в специальном освинцованном хранилище, поскольку накопленная ими доза радиации почти сотню лет назад до сих пор остается слишком опасной.


Радиоактивность естественная и искусственная.

Явление радиоактивности было открыто в 1896 г. французским физиком Анри Беккерелем. Он обнаружил, что содержащие уран вещества испускают невидимые лучи, вызывающие потемнение фотопластинки и способные проникать через бумагу, дерево и другие плотные среды. Некоторое время спустя знаменитые французские физики Мария Склодовская-Кюри и Пьер Кюри установили, что способностью испускать такие лучи обладают, кроме урана, еще торий и полоний. Немного позднее (1898) ими был открыт радий. Супруги Кюри выделили радий в чистом виде, который представлял собой мягкий серебристо-белый металл, похожий по своим свойствам на барий. Исследования показали, что интенсивность излучения, испускаемого радием, в миллионы раз больше, чем у урана. Беккерель и супруги Кюри показали сильное действие излучения радия на человеческий организм.

Способность некоторых элементов испускать открытые Беккерелем лучи супруги Кюри назвали радиоактивностью, а вещества, обладающие этой способностью, - радиоактивными веществами.

В настоящее время излучения, возникающие при радиоактивном распаде, называют ионизирующими или ядерными, излучениями. Первое из этих названий связано с одним из главных свойств данных излучений - способностью производить ионизацию в окружающей среде. Однако этой способностью обладают также и рентгеновские лучи и отчасти ультрафиолетовые. Поэтому более точным является название «ядерные излучения».

Естественные радиоактивные элементы

Природными, или естественными, излучателями называются все радиоактивные изотопы, встречающиеся в природе и не созданные человеком. Явление естественной радиоактивности, как было сказано ранее, открыто в самом конце XIX века. Следы естественной радиоактивности можно обнаружить во всех веществах живой и неживой природы.

Открытие естественной радиоактивности оказало глубокое влияние на многие фундаментальные понятия науки. Явление естественной радиоактивности было использовано для создания эффективных методов изучения микроскопической структуры веществ и их свойств. Радиоактивность естественных излучателей начали использовать при изучении строения атомных ядер для оценки возраста земли и измерения скорости образования осадков на дне океанов.

В настоящее время в природе обнаружено около 340 изотопов, причем 70 из них являются радиоактивными, это в основном изотопы тяжелых металлов.

Основное количество естественных радиоактивных изотопов относится к тяжелым элементам. Все элементы, имеющие атомный номер больше 80, имеют радиоактивные изотопы. Изотопы элементов с атомным номером больше 82 в стабильном состоянии вообще неизвестны, все они являются радиоактивными. Кроме естественно возникших радиоактивных излучателей земного происхождения, имеются некоторые изотопы, образованные в процессе взаимодействия космических лучей с газами земной атмосферы и отдельными элементами земной коры. Наиболее важными из них являются углерод (С 14) и тритий (Н 3).

Естественные радиоактивные изотопы, встречающиеся в природе, можно разбить на три группы. В первую группу входят естественные радиоактивные элементы, известные изотопы которых радиоактивны. К этой группе относятся три семейства последовательно превращающихся изотопов: ряды урана - радия, тория и актиния. Промежуточными продуктами распада этих радиоактивных семейств являются как твердые, так и газообразные изотопы (эманации). Наибольшее значение из этой группы имеют уран (U 235), торий (Тh 232), радий (Rа 226) и радон (Rn 222 , Rn 220). Во вторую группу входят изотопы химических элементов, связанных генетически, т. е. не образующие семейства. К этой группе относятся калий (К 40), кальций (Са 48), рубидий (RЬ 87), цирконий (Zг 96), лантан (Lа 138), самарий (Sm 147), лютеций (Lu 176). Основное значение из этой группы имеет калий: он обусловливает наибольшую величину естественной радиоактивности.

В третью группу входят так называемые космогенные изотопы, которые образуются в стратосфере под действием космических лучей, захватываются атмосферными осадками и в их составе выпадают на земную поверхность. К этой группе относятся тритий (Н 3), бериллий (Ве 7 , Ве 10) и углерод (С 14).

Естественные излучатели в основном являются долгоживущими изотопами, с периодом полураспада 10 8 -10 16 лет. В процессе распада они испускают α- и β-частицы, а также γ-лучи. Обычно эти естественные радиоактивные изотопы находятся в очень рассеянном состоянии.

Искусственные радиоактивные изотопы

Кроме естественных радиоактивных изотопов, существующих в природной смеси элементов, известно много искусственных радиоактивных изотопов. Искусственные радиоактивные изотопы получаются в результате различных ядерных реакций. Изучение естественной радиоактивности показало, что превращение одного химического элемента в другой обусловлено изменениями, происходящими внутри атомных ядер, т.е. внутриядерными процессами. В связи с этим были предприняты попытки искусственного превращения одних химических элементов в другие путем воздействия на атомные ядра.

Для превращения одних химических элементов в другие необходимо было атомные ядра подвергать таким воздействиям, которые бы приводили к изменению ядер и связанному с этим превращению одних элементов в другие. Следовательно, нужны были источники энергии того же порядка, как энергия внутриядерных связей. Эффективным средством воздействия на атомные ядра оказалась бомбардировка их частицами высокой энергии (от нескольких миллионов до десятков миллиардов электрон-вольт).

В первое время в качестве бомбардирующих частиц применяли α-частицы радиоактивного излучения.

В 1919 г. Резерфорд впервые осуществил искусственное расщепление ядер азота, бомбардируя их α-частицами полония. Затем стали применять и другие заряженные частицы, предварительно сообщая им очень большую скорость (кинетическую энергию) в специальных ускорителях. Кроме того, в настоящее время применяются потоки заряженных и нейтральных частиц, создаваемые ядерными реакторами. Процесс превращения атомных ядер, обусловленный воздействием на них быстрых элементарных частиц (или ядер других атомов), называется ядерной реакцией. Например, после пропускания α-лучей через слой азота образуются атомы изотопа кислорода и атомные ядра водорода, т.е. протоны. Эта ядерная реакция протекает следующим образом: α-частица попадает в ядро азота и поглощается им. Образуется промежуточное ядро изотопа фтора 9 F 18 , которое оказывается неустойчивым, оно мгновенно выбрасывает из себя один протон и превращается в изотоп кислорода.

В настоящее время запись ядерных реакции производят более сокращенно. После символа атомного ядра, подвергающегося, бомбардировке указывают в скобках бомбардирующую частицу и другие частицы, появляющиеся в результате реакции; за скобкой ставят символ атомного ядра - продукта. Этот способ записи к рассматриваемой реакции может выглядеть следующим образом. Первая искусственная ядерная реакция, проведенная Резерфордом, подтвердила возможность осуществления искусственных ядерных реакций и непосредственно показала, что протоны входят в состав атомных ядер и могут быть выбиты из этих ядер.

Все ядерные реакции сопровождаются испусканием тех или иных элементарных частиц (в том числе и γ-квантов). Продукты многих ядерных реакций оказываются радиоактивными. Явление искусственной радиоактивности было открыто известными французскими физиками Ирэн и Фредериком Жолио-Кюри в 1934 г. Они впервые искусственным путем получили радиоактивные изотопы элементов, встречающихся в природе в виде устойчивых изотопов. Такие изотопы были названы искусственно радиоактивными изотопами.

Первые искусственно радиоактивные изотопы были получены при бомбардировке α-частицами элементов бора, магния, алюминия. При бомбардировке алюминия вылетают нейтроны и получался изотоп фосфора, испускающий позитроны. Изотоп фосфора оказался радиоактивным, его атомные ядра испускали позитроны и превращались в ядра кремния. реакция бомбардировки алюминия α-частицами, открытая супругами Жолио-Кюри, показала новый вид радиоактивного распада - позитронный распад, который не наблюдается у естественно биоактивных изотопов.

В дальнейшем было показано, что искусственные радиоактивные изотопы можно получить, бомбардируя стабильные изотопы не только α-частицами, но нейтронами и другими ядерными частицами.

В настоящее время радиоактивные изотопы известны почти для всех элементов и их можно получить, при самых разнообразных ядерных реакциях. Так, даже один и тот же изотоп может быть получен в результате совсем различных ядерных реакций. После открытия искусственной радиоактивности стало возможным нанесение «метки» на атомы почти каждого химического элемента. Искусственные радиоактивные изотопы стали применяться в качестве меченых атомов. Метод меченых атомов в настоящее время имеет большое значение в самых разнообразных науки областях и практики.

Следует отметить, что методом меченых атомов называют работу как со стабильными, так и с радиоактивными изотопами, если эти изотопы используются как индикаторы. Радиоактивные изотопы применяются в качестве меченых атомов чаще, чем стабильные потопы.

В настоящее время для получения искусственных радиоактивных изотопов в промышленности применяют три основных метода: 1) бомбардировка химических соединений и элементов ядерными частицами; 2) химическое разделение смеси изотопов; 3) выделение продуктов распада естественных радиоактивных изотопов.

Для биологических и сельскохозяйственных работ имеют значение в основном изотопы, полученные двумя первыми методами. В промышленном масштабе искусственные радиоактивные изотопы получают путем облучения (преимущественно нейтронного) соответствующих химических элементов в ядерном реакторе. В результате ядерной реакции типа (n, γ) получается изотоп того элемента, который облучается. При реакциях типа (n, α) и (n, p) образуются изотопы других элементов.

Токсикологическая характеристика наиболее опасных для биосферы радиоактивных изотопов.

Группы радиотоксичности. По степени биологического действия радионуклиды как потенциальные источники внутреннего облучения разделены на пять групп.

1. Группа А - радионуклиды особо высокой радиотоксичности. К данной группе относятся радиоактивные изотопы: свинец-210, полоний-210, радий-226, то-рий-230, уран-232, плутоний-238 и др. Среднегодовая допустимая концентрация (Ки/л) для них в воде установлена в пределах Х*(10ˉ° -10ˉ 10).

2. Группа Б - радионуклиды с высокой радиотоксичностью, для которых среднегодовая допустимая концентрация в воде равна Х-(10ˉ 7 -10ˉ 9) Ки/л. Сюда относятся изотопы: рутений-106, йод-131, церий-144, висмут-210, торий-234, уран-235, плутоний-241 и др. К этой же группе отнесен стронций-90, для которого указанная концентрация равна 4*10ˉ 10 .

3. Группа В - радионуклиды со средней радиотоксичностью. Для данной группы среднегодовая допустимая концентрация в воде установлена Х*(10ˉ²10ˉ 8) Ки/л. В группу включены изотопы: натрий-22, фосфор-32, сера-35, хлор-36, кальций-45, железо-59, кобальт-60, стронций-89, иттрий-90, молибден-99, сурьма-125, цезий-137, барий-140, золото-196 и др.

4. Группа Г-радионуклиды с наименьшей радиотоксичностью. Среднегодовая допустимая концентрация их в воде равна Х* (10ˉ 7 -10ˉ 6) Ки/л. В группу входят следующие изотопы: бериллий-7, углерод-14, фтор-18, хром-51, железо-55, медь-64, теллур-129, платина-197, ртуть-197, таллий-200 и др.

5. Группа Д. Эту группу составляет тритий и его химические соединения (окись трития и сверхтяжелая вода). Допустимая концентрация трития в воде установлена 3,2*10ˉ 6 Ки/л. На основе степени радиотоксичности предъявляются надлежащие санитарные требования при работе соответственно радиоактивному изотопу.

Технологические приёмы для снижения уровней радиоактивного загрязнения продуктов животноводства.

Использование ионизирующих излучений в сельском хозяйстве. Исследования действия ионизирующей радиации на биологические объекты в зависимости от дозы, мощности облучения и состояния облучаемого объекта послужили основой разработки и внедрения в сельское хозяйство радиационно-биологической технологии. В качестве источников излучения избраны кобальт-60 и цезий-137. Они имеют длительный период полураспада; сравнительно высокую проникающую способность гамма-излучения, которая не дает наведенной радиоактивности в облучаемых объектах; физико-механические свойства, позволяющие длительно эксплуатировать элементы в радиационно-биологических установках. Эти источники можно приобретать в необходимом количестве и располагать радиационно-биологическую установку на любом расстоянии от ядерного реактора. Кроме того, для данных целей могут использоваться ускорители электронов с энергией до 10 МэВ, а также источники излучения, «связанные» с ядерным реактором (радиационные контуры, частично или полностью отработанные ТвЭЛЫ).

В России для нужд сельского хозяйства и научных исследований в области радиационно-биологической технологии создан целый ряд передвижной и стационарной техники. Передвижные гамма-установки типа «Колос», «Стебель», «Стерилизатор» смонтированы на автомашинах или автоприцепах. Они предназначены для предпосевного облучения семян зерновых, зернобобовых, технических и других культур в условиях колхозов и совхозов.

Под влиянием рентгеновых лучей в дозе 25 Р отмечалось стимулирующее влияние не только на рост и развитие цыплят после облучения их в первые сутки жизни, но и на более раннее их созревание. Курочки опытной группы начинали яйцекладку в среднем на 7 дней раньше птиц контрольной группы; у них была несколько выше средняя масса тела (Белов, Киршин, Пак, 1984).

(А. М. Кузин и др. (1963) при облучении яиц в предынкубационный период дозой 1,4 Р отмечали увеличение процента вывода цыплят за счет снижения количества погибших эмбрионов. Эти цыплята были более жизнеспособные по сравнению с контрольными. Молодки опытной группы начинали нестись на 10 дней раньше.

Однократное облучение дозами 4-200 рад неполовозрелых кур в возрасте 112 дней приводило к увеличению яйценоскости на 119% по сравнению с контролем. В. И. Беркович тоже установил на большом количестве кур стимулирующее действие излучения.

Исследованиями ряда авторов (Киршин, Григорьев, Николаев и др.; 1983) выявлено, что предынкубационное облучение яиц гамма-лучами в дозе 100:±15 Р или цыплят в день вывода дозой 404=5 Р вызывает ряд положительных изменений в общем состоянии бройлеров в период их выращивания - они более активно проявляют групповые и индивидуальные рефлексы, лучше, чем контрольные, поедают корм.

Гамма-облучение суточных поросят крупной белой породы дозами 10-25 Р вызывало у них выраженный стимулирующий эффект. В первые 3 мес жизни масса тела у животных увеличивалась на 10-15%, к 6-месячному возрасту масса тела и средняя длина туловища превышали на 6-8% массу контрольных сверстников. Радиостимуляция не оказывала отрицательного влияния на органолептические и биохимические показатели мяса (Киршин, Григорьев, Пастухов, 1983).

Имеются данные, что лучевое воздействие дозами 10-30 Р повышает выживаемость и интенсивность роста норок, улучшает качество пушнины. При этом отмечено, что у самцов эффект выражен сильнее.

Есть данные, указывающие на то, что радиационная стерилизация питательных сред не только не понижает питательных свойств, но даже в той или иной степени повышает их качество для некоторых видов микроорганизмов.

Исследования последних лет показали экономическую целесообразность применения ионизирующих излучений для обеззараживания сырья животного происхождения - шерсти, пушно-мехового, кожевенного и другого сырья, неблагополучного по инфекционным болезням.

Разработаны режимы радиационного обеззараживания сырья при сибирской язве, листериозе, трихофитии и микроспории, чуме плотоядных, ящуре. Определены параметры гамма-установки для радиационного обеззараживания шерсти, кожевенного и пушно-мехового сырья, волос, пуха и пера.

Проведенные исследования лучевой стерилизации пищевых продуктов и по продлению сроков их хранения показывают, что этот прием будет применяться, хотя он и сопровождается некоторыми биохимическими изменениями продуктов, частичной потерей витаминов и изменениями органолептических свойств. В настоящее время ионизирующие излучения рекомендуют применять при хранении мяса, полуфабрикатов и кулинарных изделий из них, рыбы и других продуктов моря, пищевого картофеля, лука и прочих корнеплодов в весенне-летние месяцы, скоропортящихся ягод и фруктов на сроки их транспортировки от производителя к потребителю, концентратов фруктовых соков и т. д. Радиационная технология обработки и хранения продуктов основана на подавлении микробиальной обсемененности (радуризация) или радиационной стерилизации (радаппертизация).

Одной из сложных и недостаточно решенных проблем на животноводческих комплексах является обеззараживание навоза и навозных стоков. Проведенные исследования подтвердили перспективность метода обеззараживания их с помощью гамма-излучения и ускоренных электронов. Наиболее эффективным и экономически выгодным оказалось комбинированное воздействие ионизирующего излучения и физических (тепло, давление) или химических факторов, так как при этом удается значительно снизить обеззараживающую дозу для яиц гельминтов и микроорганизмов. Разработана технология обеззараживания навозных стоков на основе использования ионизирующего излучения (гамма-излучения или электронов), давления и температуры.

Известно, что борьба с вредителями сельскохозяйственных растений и собранного урожая - дело исключительной важности, поскольку дает возможность сохранить очень большое количество продукции (около 20% валового сбора). Для борьбы с насекомыми-вредителями предложено использовать ионизирующее излучение в трех основных направлениях:

а) радиационной половой стерилизации самцов насекомых, специально отловленных или разведенных и затем выпущенных в естественные условия, где данный вид насекомых распространен; стерильные самцы спариваются с самками, те откладывают стерильные (неоплодотворенные) яйца; личинки из таких кладок не выводятся, что приводит к уничтожению популяции;

б) радиационной селекции болезнетворных для насекомых-вредителей микроорганизмов, грибов и др.; на полях, обработанных такими препаратами, многие насекомые-вредители заболевали и гибли;

в) радиационной дезинсекции, т.е. уничтожения насекомых-вредителей сельскохозяйственной продукции облучением. Для этих целей создана передвижная гамма-установка «Дезинсектор», а в условиях элеваторов функционируют промышленные стационарные устройства.