Химия кислоты с фосфором. Методы синтеза фосфорной кислоты и фосфатов Как получить фосфорную кислоту из фосфора

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3, 10, 11/2009

ЗАНЯТИЕ 30

10-й класс (первый год обучения)

Фосфор и его соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Краткая история открытия и происхождение названия.

3. Физические свойства.

4. Химические свойства.

5. Нахождение в природе.

6. Основные методы получения

7. Важнейшие соединения фосфора.

Фосфор находится в главной подгруппе V группы периодической системы Д.И.Менделеева. Его электронная формула 1s 2 2s 2 p 6 3s 2 p 3 , это р -элемент. Характерные степени окисления фосфора в соединениях –3, +3, +5; наиболее устойчивой является степень окисления +5. В соединениях фосфор может входить как в состав катионов, так и в состав анионов, например:

Фосфор получил свое название благодаря свойству белого фосфора светиться в темноте. Греческое слово переводится как «несущий свет». Этим названием фосфор обязан своему первооткрывателю – алхимику Бранду, который, завороженный свечением белого фосфора, пришел к выводу, что получил философский камень.

Фосфор может существовать в виде нескольких аллотропных модификаций, наиболее устойчивыми из которых являются белый, красный и черный фосфор.

Молекула белого фосфора (наиболее активного аллотропа) имеет молекулярную кристаллическую решетку, в узлах которой находятся четырехатомные молекулы Р 4 тетраэдрического строения.

Белый фосфор мягкий, как воск, плавится и кипит без разложения, обладает чесночным запахом. На воздухе белый фосфор быстро окисляется (светится зеленоватым цветом), возможно самовоспламенение мелкодисперсного белого фосфора. В воде нерастворим (хранят под слоем воды), но хорошо растворяется в органических растворителях. Ядовит (даже в малых дозах, ПДК = 0,03 мг/м 3). Обладает очень высокой химической активностью. При нагревании без доступа воздуха до 250–300 °С превращается в красный фосфор.

Красный фосфор – это неорганический полимер; макромолекулы Р n могут иметь как циклическое, так и ациклическое строение. По свойствам резко отличается от белого фосфора: не ядовит, не светится в темноте, не растворяется в сероуглероде и других органических растворителях, не обладает высокой химической активностью. При комнатной температуре медленно переходит в белый фосфор; при нагревании до 200 °С под давлением превращается в черный фосфор.

Черный фосфор по виду похож на графит. По структуре – это неорганический полимер, молекулы которого имеют слоистую структуру. Полупроводник. Не ядовит. Химическая активность значительно ниже, чем у белого фосфора. На воздухе устойчив. При нагревании переходит в красный фосфор.

Х и м и ч е с к и е с в о й с т в а

Наиболее активным в химическом отношении является белый фосфор (но на практике предпочитают работать с красным фосфором). Он может проявлять в реакциях свойства как окислителя, так и восстановителя, например:

4Р + 3О 2 2Р 2 О 3 ,

4Р + 5О 2 2Р 2 О 5 .

Металлы (+/–)*:

3Ca + 2P Ca 3 P 2 ,

3Na + P Na 3 P,

Cu + P реакция не идет.

Неметаллы (+):

2Р + 3I 2PI 3 ,

6P + 5N 2 2P 2 N 5 .

Основные оксиды (–).

Кислотные оксиды (–).

Щелочи (+):

Кислоты (не окислители) (–).

Кислоты-окислители (+):

3P (кр.) + 5HNO 3 (разб.) + 2H 2 O = 3H 3 PO 4 + 5NO,

P (кр.) + 5HNO 3 (конц.) H 3 PO 4 + 5NO 2 + H 2 O,

2P (кр.) + H 2 SO 4 (конц.) 2H 3 PO 4 + 5SO 2 + 2H 2 O.

Соли (–)**.

В п р и р о д е фосфор встречается в виде соединений (солей), важнейшими из которых являются фосфорит (Ca 3 (PO 4) 2), хлорапатит (Ca 3 (PO 4) 2 CaCl 2) и фторапатит (Ca 3 (PO 4) 2 CaF 2). Фосфат кальция содержится в костях всех позвоночных животных, обусловливая их прочность.

Фосфор п о л у ч а ю т в электропечах, сплавляя без доступа воздуха фосфат кальция, песок и уголь:

Сa 3 (PO 4) 2 + 3SiO 2 + 5C 2P + 5CO + 3CaSiO 3 .

К важнейшим соединениям фосфора относятся: фосфин, оксид фосфора(III), оксид фосфора(V), фосфорные кислоты.

Ф о с ф и н

Это водородное соединение фосфора, бесцветный газ с чесночно-рыбным запахом, очень ядовит. Плохо растворим в воде, но хорошо растворим в органических растворителях. Гораздо менее устойчив, чем аммиак, но является более сильным восстановителем. Практического значения не имеет.

Для п о л у ч е н и я фосфина обычно не используют реакцию прямого синтеза из простых веществ; наиболее распространенный способ получения фосфина – гидролиз фосфидов:

Сa 3 P 2 + 6HOH = 3Ca(OH) 2 + 2PH 3 .

Кроме того, фосфин можно получить реакцией диспропорционирования между фосфором и растворами щелочей:

4P + 3KOH + 3H 2 O PH 3 + KPO 2 H 2 ,

или из солей фосфония:

PH 4 I PH 3 + HI,

PH 4 I + NaOH PH 3 + NaI + H 2 O.

Химические свойства фосфина целесообразно рассматривать с двух сторон.

Кислотно-основные свойства. Фосфин образует с водой неустойчивый гидрат, проявляющий очень слабые основные свойства:

PH 3 + H 2 O PH 3 H 2 O (PH 4 OH),

PH 3 + HCl PH 4 Cl,

2PH 3 + H 2 SO 4 (PН 4) 2 SO 4 .

Окислительно-восстановительные свойства . Фосфин – сильный восстановитель:

2PH 3 + 4O 2 P 2 O 5 + 3H 2 O,

PH 3 + 8AgNO 3 + 4H 2 O = H 3 PO 4 + 8Ag + 8HNO 3 .

О к с и д ф о с ф о р а(III)

Оксид Р 2 О 3 (истинная формула – Р 4 О 6) – белое кристаллическое вещество, типичный кислотный оксид. При взаимодействии с водой на холоде образует фосфористую кислоту (средней силы):

P 2 O 3 + 3H 2 O = 2H 3 PO 3

Поскольку фосфористая кислота является двухосновной, при взаимодействии триоксида фосфора со щелочами образуется два типа солей – гидрофосфиты и дигидрофосфиты.

Например:

P 2 O 3 + 4NaOH = 2Na 2 HPO 3 + H 2 O,

P 2 O 3 + 2NaOH + H 2 O = 2NaH 2 PO 3 .

Диоксид фосфора Р 2 О 3 окисляется кислородом воздуха до пентаоксида:

P 2 O 3 + O 2 P 2 O 5 .

Триоксид фосфора и фосфористая кислота являются достаточно сильными восстановителями. Получают оксид фосфора(III) медленным окислением фосфора в недостатке кислорода:

4P + 3O 2 2P 2 O 3 .

О к с и д ф о с ф о р а(V) и ф о с ф о р н ы е к и с л о т ы

Пентаоксид фосфора Р 2 О 5 (истинная формула – Р 4 О 10) – белое гигроскопичное кристаллическое вещество. В твердом и газообразном состояниях молекула существует в виде димера, при высоких температурах мономеризуется. Типичный кислотный оксид. Очень хорошо растворяется в воде, образуя ряд фосфорных кислот:

метафосфорную :

P 2 O 5 + H 2 O = 2HPO 3

пирофосфорную (дифосфорную) :

P 2 O 5 + 2H 2 O = H 4 P 2 O 7

ортофосфорную (фосфорную) :

P 2 O 5 + 3H 2 O = 2H 3 PO 4

Пентаоксид фосфора проявляет все свойства, характерные для кислотных оксидов, например:

P 2 O 5 + 3H 2 O = 2H 3 PO 4 ,

P 2 O 5 + 3CaO 2Ca 3 (PO 4) 2 ;

может образовывать три типа солей:

Окислительные свойства для него не характерны, т.к. степень окисления +5 является для фосфора очень устойчивой. Получают пентаоксид фосфора при горении фосфора в достаточном количестве кислорода:

4P + 5O 2 2P 2 O 5 .

Ортофосфорная кислота Н 3 РО 4 – бесцветное кристаллическое вещество, очень хорошо растворимое в воде, гигроскопична. Это трехосновная кислота средней силы; не обладает выраженными окислительными свойствами. Проявляет все химические свойства, характерные для кислот, образует три типа солей (фосфаты, гидрофосфаты и дигидрофосфаты):

2H 3 PO 4 + 3Ca = Ca 3 (PO 4) 2 + 3H 2 ,

H 3 PO 4 + Cu ,

2H 3 PO 4 + 3CaO = Ca 3 (PO 4) 2 + 3H 2 O,

2H 3 PO 4 + K 2 CO 3 = 2KH 2 PO 4 + CO 2 + H 2 O.

В промышленности фосфорную кислоту п о л у ч а ю т экстракционным:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 2H 3 PO 4 + 3CaSO 4 ,

а также термическим методом:

Ca 3 (PO 4) 2 + 3SiO 2 + 5C 3СaSiO 3 + 2P + 5CO,

4P + 5O 2 2P 2 O 5 ,

P 2 O 5 + 3H 2 O = 2H 3 PO 4 .

К лабораторным методам получения ортофосфорной кислоты относят действие разбавленной азотной кислоты на фосфор:

3Р (кр.) + 5HNO 3 (разб.) + 2Н 2 О = 3H 3 PO 4 + 5NO,

взаимодействие метафосфорной кислоты с водой при нагревании:

HPO 3 + H 2 O H 3 PO 4 .

В организме человека ортофосфорная кислота образуется при гидролизе аденозинотрифосфорной кислоты (АТФ):

АТФ АДФ + H 3 PO 4 .

Качественной реакцией на фосфат-ион является реакция с катионом серебра; образуется осадок желтого цвета, не растворимый в слабокислых средах:

3Ag + + = Ag 3 PO 4 ,

3AgNO 3 + K 3 PO 4 = Ag 3 PO 4 + 3KNO 3 .

Кроме вышеперечисленных фосфорных кислот (содержащих фосфор в степени окисления +5), для фосфора известно много других кислородсодержащих кислот. Приведем некоторые из важнейших представителей.

Фосфорноватистая (НРО 2 Н 2) – одноосновная кислота средней силы. Второе ее название – фосфиновая:

Соли этой кислоты называют гипофосфитами, или фосфитами, например KРО 2 Н 2 .

Фосфористая (Н 3 РО 3) – двухосновная кислота средней силы, немного слабее фосфорноватистой. Также имеет второе название – фосфоновая:

Ее соли называются фосфиты, или фосфонаты, например K 2 РО 3 Н.

Дифосфорная (пирофосфорная) (Н 4 Р 2 О 7) – четырехосновная кислота средней силы, чуть сильнее ортофосфорной:

Соли – дифосфаты, например K 4 P 2 O 7 .

Тест по теме «Фосфор и его соединения»

1. Исключите «лишний» элемент из перечисленных по принципу возможности образования аллотропных модификаций:

а) кислород; б) азот;

в) фосфор; г) сера.

2. При взаимодействии 42,6 г фосфорного ангидрида и 400 г 15%-го раствора гидроксида натрия образуется:

а) фосфат натрия;

б) гидрофосфат натрия;

в) смесь фосфата и гидрофосфата натрия;

г) смесь гидро- и дигидрофосфата натрия.

3. Сумма коэффициентов в уравнении электролитической диссоциации фосфата калия равна:

а) 5; б) 3; в) 4; г) 8.

4. Число электронов на внешнем уровне атома фосфора:

а) 2; б) 3; в) 5; г) 15.

5. Фосфор, полученный из 33 г технического фосфата кальция, сожгли в кислороде. Образовавшийся оксид фосфора(V) прореагировал с 200 мл 10%-го раствора гидроксида натрия (плотность – 1,2 г/мл) с образованием средней соли. Масса примесей в техническом образце фосфата кальция (в г) составляет:

а) 3,5; б) 1,5; в) 2; г) 4,8.

6. Число -связей в молекуле пирофосфорной кислоты:

а) 2; б) 12; в) 14; г) 10.

7. Число атомов водорода, содержащихся в 4,48 л (н.у.) фосфина равно:

а) 1,2 10 23 ; б) 0,6 10 23 ;

в) 6,02 10 23 ; г) 3,6 10 23 .

8. При температуре 30 °С некая реакция протекает за 15 с, а при 0 °С – за 2 мин. Коэффициент Вант-Гоффа для данной реакции:

а) 2,4; б) 2; в) 1,8; г) 3.

9. Ортофосфорная кислота может реагировать со следующими веществами:

а) оксид меди(II); б)гидроксид калия;

в) азотная кислота; г) цинк.

10. Сумма коэффициентов в реакции между фосфором и бертолетовой солью равна:

а) 9; б) 6; в) 19; г) такая реакция невозможна.

Ключ к тесту

1 2 3 4 5 6 7 8 9 10
б в а в в б г б а, б,г в

Задачи и упражнения на фосфор и его соединения

Ц е п о ч к и п р е в р а щ е н и й:

1. Фосфор -> пентаоксид фосфора -> ортофосфорная кислота -> фосфат кальция ® фосфорная кислота.

2. Фосфат кальция -> фосфор -> фосфид кальция -> фосфин -> пентаоксид фосфора -> фосфорная кислота -> дигидрофосфат кальция.

3. Фосфат кальция -> А -> В -> С -> Д -> Е -> фосфат кальция. Все вещества содержат фосфор, в схеме три ОВР подряд.

4. Фосфор -> пентаоксид фосфора -> фосфат кальция -> фосфор -> фосфин -> фосфорная кислота -> дигидрофосфат кальция.

5. Фосфид кальция (+ р-р соляной кислоты) -> А (+ кислород) -> В (+ гидроксид натрия, недостаток) -> С (+ гидроксид натрия, избыток) -> Д (+ гидроксид кальция) -> Е.

У р о в е н ь А

1. При полном сгорании 6,8 г вещества получили 14,2 г пентаоксида фосфора и 5,4 г воды. К полученным продуктам реакции добавили 37 мл 32%-го раствора едкого натра (плотность 1,35 г/мл). Установите формулу исходного вещества и определите концентрацию полученного раствора.

Решение

Уравнение реакции:

(P 2 O 5) = 0,1 моль, (H 2 O) = 0,3 моль.

(P) = 0,2 моль, (H) = 0,6 моль.

m(P) = 6,2 г, m (H) = 0,6 г.

m = 6,8 г.

(P) : (Н) = 0,2: 0,6 = 1: 3.

Следовательно, формула исходного вещества – PH 3 , а уравнение реакции:

тогда фосфорной кислоты образуется:

(H 3 PO 4) = 2(P 2 O 5) = 0,2 моль.

Со щелочью фосфорная кислота может реагировать следующим образом:

Определим по условию задачи количество вещества NaOH:

(Н 3 PO 4) : (NaOН) = 0,2: 0,4 = 1: 2,

следовательно, идет реакция 2.

(Na 2 HPO 4) = (Н 3 PO 4) = 0,2 моль;

m (Na 2 HPO 4) = M (Na 2 HPO 4) (Na 2 HPO 4) = 142 0,2 = 28,4 г;

m (р-ра) = m (Р 2 О 5) + m (Н 2 О) + m (р-ра NaOH) =14,2 + 5,4 + 37 1,35 = 69,55 г.

(Na 2 HPO 4) = m (Na 2 HPO 4)/m (р-ра) = 28,4/69,55 = 0,4083, или 40,83 %.

Ответ. PH 3 ; (Na 2 HPO 4) = 40,83 %.

2. При полном электролизе 1 кг раствора сульфата железа(II) на катоде выделилось 56 г металла. Какая масса фосфора может вступить в реакцию с веществом, выделившимся на аноде, и каков будет состав соли, если полученный продукт реакции растворить в 87,24 мл 28%-го раствора гидроксида натрия (плотность раствора 1,31 г/мл)?

Ответ. 12,4 г фосфора; гидрофосфат натрия.

3. 20 г смеси, состоящей из сульфата бария, фосфата кальция, карбоната кальция и фосфата натрия, растворили в воде. Масса нерастворившейся части составила 18 г. При действии на нее соляной кислоты выделилось 2,24 л газа (н.у.) и масса нерастворимого остатка составила 3 г. Определите состав исходной смеси солей по массе.

Ответ. Na 3 PO 4 – 2 г; BaCO 3 – 3 г;
CaCO 3 – 10 г; Ca 3 (PO 4) 3 – 5 г.

4. Сколько кг фосфора может быть получено из 1 т фосфорита, содержащего 40 % примесей? Какой объем при н.у. займет фосфин, полученный из этого фосфора?

Ответ. 120 кг P; 86,7 м 3 PH 3 .

5. 40 г минерала, содержащего 77,5 % фосфата кальция, смешали с избытком песка и угля и нагрели без доступа воздуха в электрической печи. Полученное простое вещество растворили в 140 г 90%-й азотной кислоты. Определите массу гидроксида натрия, который потребуется для полной нейтрализации продукта окисления простого вещества.

Ответ. 24 г NaOH.

У р о в е н ь Б

1. Для полной нейтрализации раствора, полученного при гидролизе 1,23 г некоторого галогенида фосфора, потребовалось 35 мл 2М раствора гидроксида калия. Определите формулу галогенида.

Ответ. Трифторид фосфора.

2. Пробу безводного этанола, содержащего в качестве примеси 0,5 % оксида фосфора(V), сожгли в достаточном количестве кислорода. Образовавшиеся газы отделили, а полученный раствор нагрели до прекращения выделения газа, после чего к нему добавили равный по массе 0,5%-й раствор гидроксида калия. Определите массовые доли веществ в полученном растворе.

Ответ. K 2 HPO 4 – 0,261 %;
KH 2 PO 4 – 0,204 %.

3. К 2 г смеси гидрофосфата и дигидрофосфата калия, в которой массовая доля фосфора равна 20 %, добавили 20 г 2%-го раствора фосфорной кислоты. Вычислите массовые доли веществ в полученном растворе.

Ответ. KH 2 PO 4 – 9,03 %;
K 2 HPO 4 (ост.) – 1,87 %.

4. При обработке водой смеси гидрида и фосфида щелочного металла с равными массовыми долями образовалась газовая смесь с плотностью по азоту 0,2926. Установите, какой металл входил в состав соединений.

Ответ. Натрий.

5. 50 г смеси фосфата кальция и карбонатов кальция и аммония прокалили, в результате получили 25,2 г твердого остатка, к которому добавили воду, а затем пропустили избыток углекислого газа. Масса нерастворившегося остатка составила 14 г. Определите массу карбоната аммония в исходной смеси.

Решение

При прокаливании смеси идут следующие процессы:

1) Ca 3 (PO 4) 2 ;

2)

3) (NH 4) 2 CO 3 2NH 3 + СO 2 + H 2 O.

В твердом остатке – Са 3 (PO 4) 2 и CaO.

После добавления воды:

4) Ca 3 (PO 4) 2 + H 2 O;

5) СаО + H 2 O = Ca(OH) 2 .

После пропускания углекислого газа:

6) Са(ОН) 2 + H 2 O + CO 2 = Ca(HСО 3) 2 .

Нерастворившийся остаток – Ca 3 (PO 4) 2 , следовательно, m (Ca 3 (PO 4) 2) = 14 г.

Находим массу CaO:

m (CaO) = 25,2 – 14 = 11,2 г.

(CaO) = 11,2/56 = 0,2 моль,

(CaCO 3) = (CaO) = 0,2 моль,

m (CaCO 3) = 0,2 100 = 20 г.

m (NH 4) 2 CO 3 = m (смеси) – m (Ca 3 (PO 4) 2) – m (CaCO 3) = 50 – 14 – 20 = 16 г.

Ответ . m (NH 4) 2 CO 3 = 16 г.

К а ч е с т в е н н ы е з а д а ч и

1. Твердое, белое, хорошо растворимое в воде соединение А представляет собой кислоту. При добавлении к водному раствору А оксида В образуется белое нерастворимое в воде соединение С. В результате прокаливания при высокой температуре вещества С в присутствии песка и угля образуется простое вещество, входящее в состав А. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – H 2 PO 4 , В – CaO,
C – Ca 3 (PO 4) 2 .

2. Смесь двух твердых веществ красного цвета (А) и белого цвета (В) воспламеняется при слабом трении. В результате реакции образуются два твердых вещества белого цвета, одно из которых (С) растворяется в воде с образованием кислого раствора. Если к веществу С добавить оксид кальция, образуется белое нерастворимое в воде соединение. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – P (кр.), В – KClO 3 ,
C – P 2 O 5 .

3. Нерастворимое в воде соединение А белого цвета в результате прокаливания при высокой температуре с углем и песком в отсутствии кислорода образует простое вещество В, существующее в нескольких аллотропных модификациях. При сгорании вещества В образуется соединение С, растворяющееся в воде с образованием кислоты Е, способной образовывать три типа солей. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – Ca 3 (PO 4) 2 , В – P,
C – P 2 O 5 , Е – H 3 PO 4 .

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

** Интересной является окислительно-восстановительная реакция (ОВР), протекающая при зажигании спичек:

Продолжение следует

Фосфор, получение и применение

(техн.). Исходным материалом для заводского получения Ф. служит средняя фосфорнокислая соль кальция Са 3 (РО 4) 2 , значительно распространенная в природе. На фосфорных заводах она обыкновенно превращается в кислую соль Са(H 2 РО 4) 2 , которая затем смешивается с углем и подвергается прокаливанию; при этом Са(Н 2 РО 4) 2 сначала выделяет воду и переходит в метафосфорнокислую соль:

Ca(H 2 PO 4) 2 = Ca(PO 3) 2 + 2H 2 O,

а последняя уже восстановляется углем:

3Са(РО 3) 2 + 10С = Ρ 4 + Са 3 (РО 4) 2 + 10СО.

Такое предварительное обращение средней фосфорно-кальциевой соли в кислую основано на том, что сама средняя соль восстанавливается углем гораздо труднее. Как видно из приведенного уравнения разложения, этим путем можно выделить самое большее 2/3 всего имеющегося Ф., и 1/3 его остается в отбросе. Чтобы устранить этот недостаток, по предложению Вёлера в реакцию вводят еще кремнезем:

2Ca(PO 3) 2 + 2SiO 2 + 10C = P 4 + 2CaSiO 3 + 10CO,

но тогда операция требует такой высокой температуры, которая экономично может быть получаема только в электрических печах, которые в последнее время все более и более завоевывают себе место в технике. Применение электричества для производства Ф. представляет большую важность в том отношении, что оно дало возможность употреблять для восстановления не кислую соль Са(Н 2 РО 4) 2 , а непосредственно среднюю фосфорно-кальциевую соль Са 3 (РО 4) 2 ; таким образом, кроме полноты выделения Ф., при употреблении электрических печей отпадает сложная операция превращения Са 3 (РО 4) 3 в Са(Н 2 РО 4) 2 , занимающая много места при обычном оборудовании фосфорных заводов. В настоящей статье рассмотрим сначала обычно практикующиеся способы фабрикации Ф., а затем укажем те приемы, которые основаны на применении электричества. Из всех материалов, из которых можно готовить кислую фосфорно-кальциевую соль (см. Фосфористые удобрения), на фосфорных заводах предпочитают употреблять кости. Чем кость плотнее, чем, след., она богаче фосфорнокислыми солями, тем она ценится больше; напр. большим спросом пользуются лошадиные, бычачьи и овечьи кости. Обыкновенно они не подвергаются никаким предварительным операциям (напр. для извлечения жира и пр.), а прямо обжигаются до полного превращения в золу. Обжиг костей часто ведется в таких печах, которые дают возможность вести операцию непрерывно, причем весь процесс горения совершается на счет органических веществ, содержащихся в костях. При обжиге принимаются меры, чтобы не выделялись в окружающую атмосферу не сгоревшие, пахучие газы. По Флеку (Fleck), довольно практично устройство, изображенное на фиг. 1.

A шахтная печь, загружаемая костями через отверстие, закрываемое крышкой а . Чтобы печь пустить в ход, служат отверстия b , через которые вводятся дрова и поджигаются. Эти отверстия имеют заслонки, которые дают возможность регулировать количество воздуха, поступающего в печь, а кроме того, через них выгребается из печи уже вполне обожженный материал. Образующиеся при горении газы поднимаются в верхнюю часть печи с и здесь проходят над топкой d , где они сполна сгорают и затем по борову В выходят в вытяжной канал С. Над боровом В расположен ряд выпарительных чанов с растворами, назначенными для сгущения. По Флеку, на 100 частей взятых свежих костей получается 55 частей вполне обожженной (белой) золы, в которой находится 80-84 % фосфорнокислого кальция, 2-3 % фосфорнокислого магния, 10-14 % углекислого и фтористого кальция. Обожженные кости перемалываются и обрабатываются серной кислотой для превращения средней фосфорно-кальциевой соли в кислую; при этом получается и гипс CaSO 4 по уравнению:

Ca з (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) + 2CaSO 4 .

Так как полученная Ca(H 2 PO 4) 2 в воде растворима, а гипс плохо растворяется, то их легко можно разделить. Операция производится в больших деревянных чанах (до 1,3 м в диаметре), выложенных внутри свинцом и снабженных мешалкой. На 100 ч. костяной золы берется, по разным данным, от 66 до 90 ч. крепкой серной кислоты. Загрузив в чан золу (до 140 кг), приливают сюда столько кипящей воды, чтобы она покрыла золу, и затем при постоянном размешивании постепенно прибавляют серной кислоты. Масса при этом сильно пенится от разложения углекислого кальция. Разложение заканчивается в двое суток при помешивании; в чан тогда прибавляют воды и оставляют стоять спокойно 12 часов. Отстоявшуюся жидкость сливают сифоном в свинцовые сковороды для выпаривания; не растворившуюся массу промывают несколько раз водой для возможно полного извлечения кислой фосфорно-кальциевой соли, и промывные воды присоединяют к первому раствору, исключая последней воды, которая предназначается для смачивания новой порции костяной золы, идущей для разложения серной кислотой. Чтобы употреблять для такой промывки по возможности меньше воды (так как ее потом приходится выпаривать), промывание производят в особых фильтровальных аппаратах; из них наиболее простые представляют выложенные внутри свинцом деревянные ящики с дырчатым дном, на которое кладется песок, сначала крупный, а затем все более мелкий, а также солома и грубое полотно. Такие ящики располагают иногда один над другим террасообразно, что дает возможность производить методическое выщелачивание промываемой массы. Для выпаривания раствора кислой фосфорно-кальциевой соли пользуются или теряющимся жаром костеобжигательных и др. печей, или паром, причем жидкость все время перемешивается. Это делается по той причине, что при сгущении раствора выделяется находящийся в растворе в небольшом количестве гипс, который при спокойном состоянии жидкости дает на стенках сковороды прочную кору, плохо проводящую тепло; при перемешивании же этого не происходит. Сгущение раствора продолжают до тех пор, пока уд. вес не достигнет 1,4-1,5 (что отвечает содержанию 62 % Р 2 О 5). Гипс отделяется фильтрованием, и к раствору прибавляется около 25 % крупного порошка кокса или древесного угля. Смесь высушивается в железном котле (по Флеку, чтобы воды осталось около 5,5 %) и затем подвергается прокаливанию в ретортах. Реторты делаются из огнеупорной глины имеют грушевидную или цилиндрическую форму и рассчитаны на загрузку 6-15 кг смеси. Смотря по производительности завода, роду топлива и пр., устройство печей для нагревания реторт довольно разнообразно. Обыкновенно реторты располагаются в печи не в одиночку, а группами, иногда в несколько рядов, одни над другими. На фиг. 2 изображен поперечный разрез одной из таких печей.

Она устроена на 36 реторт и имеет в длину 6,6-7 м, в ширину - 1,32 м и в высоту - 1,61 м; у нее две топки, которые отделяются одна от другой невысокой (0,286 метр. над топкой) стенкой е , идущей вдоль всей печи. Решетка топки а (длиной 0,55 м) только в передней своей части имеет колосники, на всем же остальном протяжении она устроена из кирпичей. Реторты лежат горизонтально по ту и другую сторону продольной стенки e , опираясь на нее своей задней частью. Топочные газы, охватывая реторты, выходят в боров d (выс. 0,175 м и 0,695 м шир.) через отверстия в своде и направляются в вытяжную трубу g ; при этом позади печи они проходят под сковородами, где производится выпаривание растворов фосфорно-кальциевой соли. Горло каждой реторты выходит из печи наружу (через стенку, разборную для каждой пары реторт) и соединяется с приемником для конденсации Ф.; последний состоит из двух глиняных глазурованных колпаков с трубками, при помощи которых они соединяются между собой и с горлом реторты. Каждый колпак имеет в высоту 0,18 м, диам. 0,154 м и стоит на круглой подставке 0,01 м выс. и 0,24 м диам., наполненной водой. На фиг. 3 изображена печь для цилиндрических реторт; у нее также находятся 2 топки.

Реторты лежат по одну и по другую сторону средней стенки С тремя рядами, причем нижний ряд их покоится своей задней частью на самой стенке, верхние же ряды поддерживаются прокладками x . Топочные газы поднимаются к своду n и через отверстия l идут в боров В и затем в трубу Ζ . Горла r каждых трех реторт соединяются с одним общим приемником ор (отдельно фиг. 4 для двух реторт) из эмалированного железа.

Он состоит из вертикальной трубы о с боковыми патрубками, в которые входят наконечники, насаженные на горло реторт, и из цилиндрической части рр , разбитой на три отделения. Пары Ф. по трубе о поступают в верхнее отделение, наполненное водой, где большей частью и сгущаются, и Ф. собирается под водой. Не сгустившиеся пары и газы, как показано на фиг. стрелкой, идут в среднее отделение, тоже наполненное водой, а затем через находящуюся здесь посередине трубку проходят в нижнее отделение (с водой) и выходят, загораясь, наружу. Ф. собирается под водой во всех трех отделениях. Существуют и другого рода устройства, как печи, так и реторты и приемники. Сама операция ведется следующим образом: реторты загружаются и вмазываются в печь; горло их вставляется в приемники и обмазывается глиной или другой замазкой, чтобы не было щелей, через которые бы выходили пары Ф.; затем начинают постепенно разогревать печь (при быстром нагревании реторты могут треснуть). Температура мало-помалу поднимается, и Ф. начинает перегоняться; вместе с ним выделяются из приемников неприятно пахнущие и вредные для здоровья рабочих газы (фосфористый водород, окись углерода и пр.); поэтому приемники стараются уединить и вентилировать помещения, где они находятся. При отгонке Ф. наблюдают, чтобы не было закупорки в приемниках, и они время от времени прочищаются железным прутом. Через сутки гонка сильно ослабевает, что замечается по пламени газов, выходящих из приемников; через 1 1/2 - 2 суток она совсем прекращается, и тогда в печи постепенно уменьшают жар. Когда печь остынет, приемники отделяют от реторт и присоединяют к ним конец горла реторты, где обыкновенно находится Ф.; стенка печи разбирается, реторта вынимается и обыкновенно отбрасывается в сторону, после того как убеждаются, что в ней нет неразложившейся смеси. На их место в печь вмазываются новые загруженные реторты. Из приемников и обломков реторт выбирается Ф. под водой при помощи особых шпателей. Сырой Ф. имеет красноватый или буроватый вид; по Флеку, его получается 15,4 %, считая на костяную золу. Кроме примеси красного Ф., в нем находятся различные соединения Ф. с углеродом, кремнием и пр. Для очистки сырого Ф. его на одних заводах фильтруют, а на других перегоняют. Для фильтрования Ф. кладется в замшевый мешок, который помещается в воду, нагретую до 50-60°; расплавленный Ф. выдавливается из мешка особым прессом. На французских заводах расплавленный Ф. смешивают с угольным порошком и кладут в железный цилиндр с перегородкой из пористой глины; впуская в цилиндр пар под известным давлением, продавливают Ф. через поры перегородки, при чем большая часть примесей остается с углем и, таким образом, не загрязняет пористой пластины; оставшийся уголь смешивается с новой порцией Ф. Перегонка Ф. производится в чугунных ретортах, которые по две или по три помещаются в одной печи (фиг. 5).

Ф. плавят в медном котле под водой и смешивают с песком (1/8 его веса). Когда масса при охлаждении застынет, ее загружают в реторты, которые сначала переворачиваются так, чтобы по возможности стекла вся вода, а затем помещаются в печь. Горло реторты погружается на 1,5-2 см в кадку с водой, где находится свинцовая чашка с железной ручкой для собирания перегоняемого Ф. В реторту загружается 5-6 кило сырого Ф. Нагревание ведется медленно и равномерно усиливаясь; стараются по возможности полнее удалить воду перед началом гонки, так как она служит материалом для образования фосфористого водорода, который все время выделяется из реторты. Когда перегонка кончилась, печь охлаждается, реторты вытаскиваются и очищаются. Первые собранные порции Ф. по цвету напоминают отбеленный воск, следующие имеют желтовато-красный вид, а последние состоят из красного Ф. Чем аккуратнее ведется гонка, тем больше получается белого Ф. и тем вообще больше выход его. Потеря при перегонке достигает 10-15 %. Очищают Ф. и химическим путем. Для этой цели, по Ридману (Readman), его плавят в свинцовом сосуде под водой при помощи пара; сливши воду, насколько это возможно, прибавляют 4 % двухромовокалиевой соли, хорошо перемешивают в течение 1/2 часа и затем приливают столько же серной кислоты; низшие окислы Ф. при этом окисляются, и он становится совершенно белым. Если окисление не помогает, Ф. подвергают перегонке. Очищенного Ф. получается 8-11 % на взятую костяную золу. Ф. поступает в продажу обыкновенно в виде палочек. Для формования его во Франции поступают следующим образом. Ф. плавят под водой; затем рабочий берет стеклянную трубку с железным наконечником, снабженным краном, и, погрузивши ее в Ф., насасывает его ртом до крана, который тогда закрывается; кран служит для того, чтобы расплавленный Ф. не мог попасть в рот. У рабочего таких трубок бывает до 20 шт. Трубки охлаждаются, и из них через отверстие крана Ф. выталкивается железным прутом. Один рабочий может приготовить таким путем до 100 кг Ф. На английских заводах эта операция ведется более безопасным для рабочих способом. Формовочный аппарат состоит из медного четырехугольного ящика, помещенного в железный котел с водой; в нем находится Ф., который плавится при нагревании воды в котле. В дно ящика вставлены две горизонтальных латунных трубки, внутри полированных. Эти трубки, пройдя стенки котла, входят своим концом (до 3 см) в длинный (2-3 мет.) ящик, через который проходит ток холодной воды. Ф. в трубке застывает, но остается довольно мягким и вязким. Перед началом работы в эти трубки вводится загнутый конец железной проволоки, который и обволакивает застывший Ф. Потягивая за проволоку, можно постепенно вытянуть из трубки такую длинную палку Ф., насколько это позволяют размеры ящика (до 2-3 мет.). Когда уже дальше вытягивать нельзя, Ф. обрезается почти у самой латунной трубки, однако при этом оставляется небольшой кусок его, за который и продолжают тянуть новую палку Ф.; работа, таким образом, идет непрерывно. Ее можно прекратить на ночь и затем продолжать тем же порядком. Иногда Ф. делается в виде плиток или кругов, которые часто составляются из отдельных кусков. Упаковка Ф. требует соблюдения многих предосторожностей, при отсутствии которых он может воспламениться при перевозке и хранении. Палочки Ф. помещаются в жестяные банки весом на 2,5-3 килогр., заливаются водой и тщательно укупориваются так, чтобы вода нигде не могла просасываться, в чем убеждаются, подержав некоторое время банку на белой пропускной бумаге. При перевозке большой партии Ф., напр. до 300 кило, соответственное число жестянок помещают в деревянный ящик, обитый внутри жестью; они затем заливаются водой. Иногда жестянки с Ф. перевозятся в небольших винных бочках; при этом их заливают водой, содержащей некоторое количество спирта, чтобы предупредить замерзание воды зимой. Бочонки осмоляются, обертываются сеном и обшиваются холстом.

Из друг. способов производства Ф. можно указать на способ, предложенный Флеком, который имел в виду воспользоваться органическими составными частями костей для приготовления клея. Свежие кости раздробляются до кусков величиной с орех и держатся некоторое время в теплой воде 50-60° для отделения жира; затем их кладут в корзины и погружают в соляную кисл. уд. в. 1,05 на неделю, пока они не станут слегка прозрачными и гибкими; тогда их помещают в соляную кисл. уд. в. 1,02, пока они совсем не сделаются мягкими. Остаток, не растворившийся в кислоте, перерабатывается на клей; раствор же выпаривается в глиняных чашках, пользуясь теряющимся жаром ретортных печей, пока не станет кристаллизоваться кислый фосфорнокислый кальций; тогда жидкость охлаждают в деревянных чанах, выделившаяся соль отделяется от маточного раствора, отжимается, высушивается при 100° и смешивается с угольным порошком. Из маточного раствора сначала при дальнейшем выпаривании выделяется нечистая кислая фосфорно-кальциевая соль, а затем прибавкой извести из него выделяют оставшуюся фосфорную кислоту в виде средней кальциевой соли. В дальнейшем ее вновь перерабатывают на кислую соль вместе с остатком из реторт. Значительное количество выпариваний, которое вводится при этом способе, вообще мало окупается устройством клееваренного производства, и он не мог вытеснить старый способ выработки Ф. при помощи серной кисл. Этот последний способ тоже имеет множество неудобств. Прежде всего, при нем требуется иметь вблизи завод серной кислоты, чтобы не переплачивать много на ее перевозку; затем необходимо иметь мастерскую для производства реторт, которые служат недолго и дают до 1/2-1 кг Ф.; значительное неудобство представляет хранение кислотных жидкостей, выпаривание и фильтрование растворов, удаление гипса и пр. Ридлин предложил вести добывание Ф. в электрической печи. Исходным материалом служит природный фосфат; его размалывают, смешивают с песком и углем и закаливают электрическим током. Ф. по мере образования улетучивается и собирается в особом приемнике; остаток дает жидкий шлак, который вытекает из печи, а на его место поступает новая порция смеси фосфорита с углем и песком и т. д. Производство идет непрерывно. Служащая для этой цели на одном английском заводе печь (в Wednesfield"e) имеет следующее устройство (фиг. 6).

F. - шахтная печь, на верху которой находится воронка для загрузки материала а с заслонками А и винт В для подачи его в печь. Электрический ток вводится в печь при помощи угольных электродов С" , укрепленных в металлических гильзах С . Для начала образования вольтовой дуги служат тонкие электроды C 2 (угольные или металлические), которые или лежат рядом с электродами С", или проходят через них. Образующиеся пары и газы выходят в отверстие g , а шлаки вытекают в h. Для наблюдения за ходом операции служат отверстия x; через них же посыпаются электроды угольным порошком, чтобы более или менее предохранить их от выгорания. По Колардо (Colardo), берут смесь 310 ч. средней фосфорно-кальциевой соли, 260 ч. извести и 160 ч. угля (все это в порошке) и прокаливают в электрической печи. При соблюдении такой пропорции реагирующих веществ получают смесь углеродистого кальция (карбид) и фосфористого кальция; только незначительная часть Ф. выделяется в парах вместе с окисью углерода. Чтобы не сгущать отсюда Ф., пары пропускаются через накаленную известь, которая поглощает Ф. Образующаяся смесь карбида с фосфористым кальцием разлагается водой, при этом получается ацетилен и фосфористый водород. Эти газы пропускаются сначала через накаленную реторту или угольную трубку, наполненную углем, где происходит разложение фосфористого водорода на Ф. и водород, затем проходят ряд промывочных аппаратов, в которых оседает Ф. и отделяется ацетилен от водорода (поглощением, напр., ацетоном). Водород идет для нагревания. Существует довольно сложный патент Бильодо (Billaudot), где одновременно получают Ф. и карбид. Главная идея патента состоит в устройстве особых конденсаторов для паров Ф., где сгущение происходит без соприкосновения Ф. в нагретом состоянии с водой, как это обыкновенно практикуется, что дает возможность избегнуть потерь Ф. (от взаимодействия его с водой) и устраняет необходимость дальнейшей очистки Ф. (фильтрованием и пр.) Одновременно с Ф. получается и карбид кальция. Диль (Dill) предложил разлагать током смесь фосфорной кислоты с угольным порошком. К концентрированному раствору фосфорной кислоты уд. веса 50-60° прибавляют 1/4 - 1/5 по весу угля и такую смесь загружают в глиняный цилиндр через особую воронку. Цилиндр стоит на подставке из проводника электричества, через которую входит положительное электричество в угольный электрод. Другой электрод входит в цилиндр через пробку вверху; он может подниматься и опускаться при помощи винтового приспособления. Пары Ф. выходят через отводную трубку в конденсатор; работают током в 80-150 ампер с напряжением в 120 вольт. Когда большая часть Ф. выделилась, ток на время прерывают, загружают новую порцию смеси и затем вновь продолжают работу. Из др. способов получения Ф. укажем на предложение Франка и Росселя производить восстановление кисл. ф-но-кальц. соли алюминием в присутствии кремнезема:

3Са(РО 3) 2 + 10Al + 3SiO 2 = 6Р + 5Al 2 О 3 + 3CaSiO 3 .

По предложению Shearer и Clapp, берут природный фосфорнокислый алюминий Al 2 O 3 P 2 O 5 , смешивают его с поваренной солью и углем и прокаливают в токе хлористого водорода HCl; при этом образуется двойная соль хлористого алюминия с хлористым натрием Al 2 Cl 6 4NaCl и выделяется Ф., окись углерода СО и водород. Реакцию можно представить следующим уравнением:

Al 2 O 3 P 2 O 5 + 4NaCl + 6HCl + 8C = Al 2 Cl 6 NaCl + 8СО + 3Η 2 + 2P.

Взятые материалы должны быть хорошо измельчены. Прокаливание ведут сначала около 10 ч. при темно-красном калении до тех пор, пока перестанет выделяться окись углерода и водород, затем температуру поднимают до белого каления, и только тогда начинает отгоняться Ф. Гонка продолжается до 30 часов, в зависимости от количества Ф. Альфред Краус предложил прокаливать смесь фосфатов с железными рудами, напр. гематитом, и готовить таким образом фосфористое железо; последнее затем сплавляется с пиритом; Ф. при этом улетучивается и сгущается, а остается сернистое железо. Оно оставляется вылеживаться на открытом воздухе и постепенно окисляется в железный купорос и пр. Белый Ф. содержит обыкновенно примесь мышьяка (0,5-3,5°); в нем встречается сера, углерод, кальций и др. Для получения в больших размерах красного фосфора пользуются часто способом, предложенным еще в 1845 г. Шрёттером (Schrötter). В печи F (фиг. 7) помещаются один в другом два котла, промежуток между которыми наполнен сплавом олова со свинцом N (в равных количествах).

На внутреннем котле M находится крышка G , прикрепленная болтами НН к краям внешнего котла. В котле M имеется песок B , в котором помещается третий переносный котел С со стеклянным или фарфоровым приемником Р . В крышке его E оканчивается железная или медная изогнутая трубка J , которая проходит через крышку G и другим своим концом погружается в воду или ртуть, находящуюся в сосуде k ; у нее имеется кран x. Под трубкой J стоит спиртовая лампа для прогревания ее на случай закупорки Ф. Крышка Е удерживается на своем месте пружиной S , которая при внезапном большом давлении внутри котла С подается и крышка может приподняться. Операция превращения белого Ф. в красный с этим аппаратом очень проста. Сухие куски Ф. кладут в котел С , ставят на место крышку Ε и G и начинают постепенно нагревать. Воздух из котла С выходит через трубку J . Температуру поднимают до 260° (ее определяют термометром, опущенным в расплавленный металл N), и держат ее в течение нескольких дней (до 10), после этого печь охлаждают, закрыв предварительно кран x, и выламывают образовавшийся красный Ф. Аппарат Шрёттера подвергался многочисленным видоизменениям. Куанье (Coignet) в Лионе производит ту же операцию в одном железном котле. Полученный описанным способом красный Ф. содержит обыкновенно следы белого Ф. В одном образце сырого красного Ф. Фрезениус и Лук (Luck) нашли белого Ф. 0,56 %, фосфористой кисл. 1,302 %, фосфорной кисл. 0,880 %, воды и других примесей 4,622 % и красного Ф. 92,63 %. Для удаления белого Ф. пользуются различными средствами. Сырой красный Ф. подвергается обработке сероуглеродом, который растворяет белый Ф., не трогая красного. Из этого раствора выделяют Ф. отгонкой сероуглерода, который затем снова идет в дело. Иногда заставляют Ф. медленно окисляться на воздухе в фосфорную и фосфористую кислоту и затем промывают его водой. По предложению Никлеса (Nickles), Ф. взмучивают в растворе хлористого кальция уд. веса 1,95; белый Ф., как более легкий, всплывает на поверхность, а красный собирается на дне. Его затем промывают водой и сушат. Главнейшая масса добываемого в технике Ф. идет для производства спичек; некоторое количество его идет для получения фосфорного ангидрида, для приготовления взрывчатых веществ и пр.

С. Вуколов. Δ.

Фосфор (медиц.) - Из двух видоизменений Ф. красный, или аморфный, нерастворим в тканевых жидкостях и в физиологическом отношении поэтому совершенно безразличен, даже при употреблении больших доз; желто-белый кристаллический, или официнальный, Ф. растворяется, хотя в очень малых количествах, в воде, алкоголе, жирах и желчи и обладает резко выраженными ядовитыми свойствами. В 100 частях теплой воды растворяется 0,00027 Ф.; растворимость в кишечных жирах и желчи равна 0,01-0,026 на 100. Действие официнального Ф. на организм представляется совершенно различным, в зависимости главным образом от величины дозы и продолжительности употребления. При введении весьма малых доз в течение продолжительного времени Ф. обнаруживает раздражающее действие почти исключительно на костеобразовательные вещества, при чем раздражение это ведет не к перерождению затронутых тканей, а к их разращению. Вегнер, давая неделями молодым растущим животным такие небольшие количества Ф., которые неспособны вызвать расстройства общего состояния, находил в крови экспериментируемых в высшей степени замечательные изменения. Оказалось, что на всех тех местах, где при нормальных условиях из хряща развивается широкопетлистое губчатое костное вещество с богатым содержанием красной мозговой ткани, под влиянием Ф. получается совершенно равномерная плотная и крепкая ткань, по своему наружному виду, микроскопическому строению и химическому составу (по соотношению органических веществ к неорганическим, по содержанию фосфорнокислых солей) ничем не отличающаяся от компактной костной ткани коркового слоя трубчатых костей. Образовавшееся ранее, до кормления Ф., губчатое костное вещество остается в то же время совершенно неизмененным. Костная ткань, образующаяся со стороны надкостницы, т. е. та, которая обусловливает рост кости в толщину, претерпевает аналогичный процесс утолщения, хотя и менее резко выраженный. Однако если слишком долго вводить животному небольшие количества Ф., то сначала рассасывается остававшееся неизмененным губчатое вещество, а впоследствии такому же процессу разрежения подвергается и искусственно образовавшееся костное вещество с образованием в том и другом случае красной мозговой ткани. Таковы явления при повторном введении весьма малых доз Ф. Наблюдениями различных исследователей установлено далее, что если вводить Ф. в умеренных, но в постепенно возрастающих дозах или если подвергаться частому вдыханию фосфорных паров, как это имеет место на спичечных фабриках, то в результате развиваются весьма резко выраженные воспалительные изменения в костях, ведущие к их омертвению. Наблюдаемое у рабочих на спичечных фабриках так назыв. фосфорное омертвение челюстей исходит обыкновенно от кариозных зубов или изъязвленных десен (см.). Добытые Вегнером данные, подтвержденные другими исследователями, послужили исходной точкой для терапевтического применения весьма малых доз Ф. при некоторых патологических состояниях костной системы, особенно при задержке или недостаточном развитии костного скелета в детском возрасте (при рахите), при остеомаляции, при недостаточном окостенении мозолей, после переломов и др. Большинство наблюдателей (Кассовитц, Раухфус, Мандельштам, Шабанова и др.) отмечает весьма благоприятное влияние Ф. на общее состояние страдающих английской болезнью детей, на отправления у них конечностей, на столь грозные у рахитиков симптомы ларингоспазма. Взрослым дают по 0,0003 грамм до 0,001 грамма на прием 1-3 раза в день (наибольшая доза в день 0,005 грамм), детям не больше 0,0005 грамма в сутки. Если превышать указанные осторожные дозы, то наступает отравление, поводом к нему редко бывает неосторожность, большей частью - покушение на самоубийство. Для последней цели пользуются обыкновенно головками фосфорных спичек, реже - идущей для уничтожения крыс фосфорной пастой (смесь Ф. с обыкновенным тестом, с прибавлением жира). В 50-70-х гг. прошлого столетия, когда еще не были в ходу шведские спички, приготовляемые помощью безвредного красного Ф., отравление Ф., особенно в Германии и Франции, составляло довольно частое явление. Во Франции в 1851-71 гг. среди 793 отравлений 267 (38 %) падает на отравление Ф. Большие цельные куски Ф. могут, не растворяясь, проходить через кишечник без особого вреда. Припадки отравления обнаруживаются уже спустя несколько часов после введения яда, выражаясь в ощущении жажды, в сильных болях в области желудка, в рвоте с чесночным запахом и светящимися в темноте массами. При сравнительно небольших приемах Ф. дело этим ограничивается, особенно, если большая часть яда выведена была рвотой или искусственным выкачиванием содержимого желудка. В более серьезных случаях описанные местные явления сначала на 3-4 дня стихают, но вслед за этим кажущимся затишьем отравление развертывается в тяжелую картину расстройства общего питания. Желудочно-кишечные расстройства возобновляются, печень увеличивается, кожа и склера принимают желтоватую окраску, ухудшается общее состояние, все более и более расстраивается сердечная деятельность, больной жалуется на мышечные боли и общую слабость, одновременно из всех слизистых оболочек, из носа, кишок, матки появляются кровотечения; искусственно вызванные и менструальные кровотечения бывают при этом весьма обильны и обыкновенно более не останавливаются. Количество выделяемой мочи постепенно уменьшается, в ней открываются желчный пигмент, желчные кислоты, белок, а в последние дни болезни почечный эпителий, кровяные и жировые цилиндры. Выделение азота мочой увеличивается весьма значительно, нередко втрое против нормы, содержание мочевины, наоборот, весьма резко уменьшается, в тяжелых случаях в моче обнаруживается мясомолочная кислота, пептон, нередко лейцин и тирозин. Сознание большей частью сохраняется до самого конца, в других случаях - за один, за два дня до смерти наступают мозговые расстройства, сонливость, бред, судорожные явления. Смерть наступает обыкновенно на 7-8 день после отравления. При введении яда в очень большой дозе больной может умереть уже через несколько часов от паралича сердца. Известны, однако, случаи выздоравливания, которое тянулось 4-6 недель и сопровождалось усиленным отделением мочи. Посмертный анатомический диагноз характеризуется 1) многочисленными кровоизлияниями в коже, подкожной и межмышечной клетчатке, в слизистых оболочках, в брюшине, в плевре и 2) жировым перерождением печени, почек, сердца, поджелудочной железы, желез слизистых оболочек желудка (гастроаденит) и кишок, мышц скелета и стенок сосудов. Сущность патологических изменений при остром отравлении Ф. заключается в глубоком расстройстве обмена веществ, в основе которого лежит понижение окислительных процессов в организме и усиленный распад белков. По Бауеру, под влиянием Ф. выделение угольной кислоты уменьшается на 47 %, а поглощение кислорода на 45 %. По причине недостаточного окисления белковые вещества не превращаются в обычные конечные продукты, а образуют промежуточные вещества, из которых способные к диффузии (молочная кислота, пептон и друг.) выводятся мочой, тогда как коллоидные, как жиры, отлагаются в тканях. Желтуха объясняется давлением, производимым увеличенными жирноперерожденными печеночными клетками на желчные ходы. Причина кровотечений кроется в жировом перерождении стенок всех, даже мельчайших, сосудов и в присущей вышедшей из сосудов крови при отравлении Ф. весьма малой свертываемости. Лечение острого отравления Ф. Возможно раннее механическое удаление яда помощью желудочного насоса или рвотного. Лучшее рвотное - сернокислая медь, она действует одновременно и в качестве противоядия. Ее дают по 0,2 гр. каждые 5 минут до появления рвоты, а затем продолжают давать через 1/4 часа по 0,05 гр., как противоядие. Медь покрывает частицы Ф. слоем малорастворимой и потому малодеятельной фосфористой меди. Ввиду медленного всасывания Ф. из кишечника можно рассчитывать также и на слабительные; необходимо, однако, тщательно избегать маслянистых слабительных, а равно также введения каких-либо жирных (молока, яиц) или содержащих алкоголь веществ. Прекрасное противоядие представляет также неочищенное, содержащее кислород терпентинное масло (1,0-2,0 гр. через каждые 1/4 - 1/2 часа, всего 5-10 гр.). Если яд уже успел всосаться и начинается коллапс, то на первом плане показуются возбуждающие деятельность сердца средства. При судебно-медицинском открытии Ф. подозрительные массы (содержимое желудка, кишок, пищевые продукты, напитки и др.) перегоняют, по Митчерлиху, в темном помещении по предварительном их подкислении разведенной серной кислотой. В случае присутствия Ф. на охлажденном конце пароотводной трубки замечается характерное свечение. Для проявления реакции достаточно 1 миллигр. Ф. в 200000 частях жидкости. Отрицательный результат не говорит, однако, против наличности Ф., так как присутствие в исследуемой массе многих веществ, каковы терпентинное масло, хлороформ, эфир, бензол, хлор, сернистая кислота, сероводород, эфирные масла, препятствует свечению. По Дюссару, испытуемые массы нагреваются в аппарате, подобном Маршеву, с чистым цинком и серной кислотой; выделяющийся при наличности Ф. из газоотводной трубки фосфористый водород горит при зажигании прекрасным изумрудно-зеленым цветом. Пламя рассматривается в темной комнате против белой фарфоровой пластинки. Эта весьма чувствительная реакция частью видоизменяется, частью маскируется при наличности в испытуемой массе некоторых органических летучих веществ (сероводород, винный спирт, эфир), а потому, по Блондло, целесообразно выделяющийся при указанном способе газ провести сначала через раствор едкой щелочи, а потом через раствор азотнокислого серебра и образовавшееся вещество (фосфористое серебро) вторично разложить цинком и серной кислотой. Ср. Wegner, "Der Einfluss des Phosphors auf den Organismus" ("Arch. für Pathol. Anatomie und caet.", 1872 т. 55, стр. 11); Kassowitz, "Die normale Ossification und die Erkrankungen des Knochensystems bei Rachitis und hereditärer Syphilis" (1882); H. Корсаков, "К вопросу о патогенезе английской болезни" (диссерт., 1883); Мандельштам, "Врач" (1889, №№ 5, 7, 9, 10 и 11); Шабанова, "Врач" (1889, №№ 16-19); Busch, "Sitzungsber. der Niederrheins. Geschichte für Natur und Heilkunde" (1881); Voit, "Zeitschrift für Biologie" (1880, т. XVI, стр. 55); "Eulenhurg"s Real-Encyclop." (1888, т. XV, стр. 549 и 554); "Maschk"s "Handbuch" (1888, т. II, стр. 176-228); Bauer, "Der Stoffamsatz bei der Phosphorvergiftung" ("Zeits. für Biologie", 1871, т. VII, стр. 63); Bamberger, "Zur Theorie und Behandlung der acuten Phosphorverg." ("Wirzburg. medicin. Zeitung" (1867); Гагер, "Руководство к фармацевт. и медико-хирург. практике" (1893). См. также руководства по фармакологии (Бинца, Россбаха и Нотнагеля и др.) и токсикологии (Коберта, Гофманна и др.).

М. Б. Коцын.

Фосфор в живых организмах входит в состав трех органических веществ, имеющих весьма важное физиологическое значение: лецитина, нуклеина и глицерино-фосфор. кисл. Кроме того, фосфорная кислота находится в организме в соединении с натром, кали, известью и магнезией. Преобладание фосфатов в крови является одной из характеристических особенностей плотоядных, тогда как в крови травоядных преобладают углекислые соединения, и, подобно солям калия, фосфорная кислота встречается преимущественно в кровяных шариках, в мышцах и в мозгу. Наконец, та же фосфорная кислота в соединении с известью составляет наибольшую часть из неорганических веществ, входящих в состав костей и зубов. Фосфаты встречаются во всех жидкостях тела; но ими особенно богата моча, с которой они и выделяются из тела, по крайней мере, у плотоядных и у животных со смешанным питанием. Травоядные же выделяют фосфаты преимущественно вместе с кишечными извержениями. В нервной системе человека заключается около 12 гр. фосфорной кислоты, в мышечной системе 130 гр., в костях же скелета 1400 гр. - Ф. выделяется из тела в виде фосфатов, образующихся из разложения лецитина, нуклеина и глицерина фосфорной кислоты и окисления фосфорсодержащих продуктов этого расщепления. Человек выделяет ежедневно от 2,50 до 3,50 грам. фосфорной кислоты. Большая часть Ф. выделяется из тела в форме кислой фосфорнокислой соли калия, придающей моче плотоядных и животных со смешанным питанием кислую реакцию; кроме того, благодаря этой же кислой соли фосфаты земель в моче находятся в растворенном состоянии. Ф. мочи относится ко всему азоту мочи приблизительно как 1 к 6 или 7; но отношение это, конечно, меняется сообразно с характером пищи. Судя по тому, что Ф. входит в состав таких важных соединений, как лецитин и нуклеин и, кроме того, что он составляет неотъемлемую часть органов и по преимуществу нервной системы, мышц и половых желез, значение его для жизни должно быть весьма выдающимся. Ф. и числится в ряду биогенных элементов. Образование кислых фосфатов из нейтральных объясняется многими действием на эти последние органических кислот, образующихся во время деятельности органов.

Энциклопедический словарь

- (лат. Phosphorus) Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30,97376, неметалл. Природный Ф. состоит из одного стабильного изотопа 31P; получено шесть искусственных радиоактивных… … Большая советская энциклопедия

Фосфор(P) Атомный номер 15 Внешний вид простого вещества Белый фосфор белый, восковидный, слегка фосфоресцирующий Свойства атома Атомная масса (молярная масса) 30,973762 а. е. м. (г/моль) Радиус атома … Википедия

Фосфор(P) Атомный номер 15 Внешний вид простого вещества Белый фосфор белый, восковидный, слегка фосфоресцирующий Свойства атома Атомная масса (молярная масса) 30,973762 а. е. м. (г/моль) Радиус атома … Википедия Википедия

- (живое серебро, Hydrargirum, Quecksilber, mercure), Hg принадлежит к числу 7 металлов, известных в глубокой древности: золото, серебро, медь, железо, свинец, олово и Р. По сравнению с остальными 6 металлами человек, по всей вероятности,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Железо - (Ferrum) Металл железо, свойства металла, получение и применение Информация о металле железо, физические и химические свойства металла, добыча и применение железа Содержание Содержание Определение термина Этимология История железа Происхождение… … Энциклопедия инвестора

Фосфор - элемент 3-го периода и VA-группы Периодической системы, порядковый номер 15. Электронная формула атома [ 10 Ne]3s 2 3p 3 , устойчивая степень окисления в соединениях +V.

Шкала степеней окисления фосфора:

Электроотрицательность фосфора (2,32) значительно ниже, чем у типичных неметаллов, и немного выше, чем у водорода. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, проявляет неметаллические (кислотные) свойства. Большинство фосфатов нерастворимы в воде.

В природе — тринадцатый по химической распространенности элемент (шестой среди неметаллов), встречается только в химически связанном виде. Жизненно важный элемент.

Недостаток фосфора в почве восполняется введением фосфорных удобрений — главным образом суперфосфатов.

Аллотропные модификации фосфора


Красный и белый фосфор Р
. Известно несколько аллотропных форм фосфора в свободном виде, главные — это белый фосфор Р 4 и красный фосфор P n . В уравнениях реакций аллотропные формы представляют как Р (красн.) и Р (бел.).

Красный фосфор состоит из полимерных молекул P n разной длины. Аморфный, при комнатной температуре медленно переходит в белый фосфор. При нагревании до 416 °С возгоняется (при охлаждении пара конденсируется белый фосфор). Нерастворим в органических растворителях. Химическая активность ниже, чем у белого фосфора. На воздухе загорается только при нагревании.

Применяется как реагент (более безопасный, чем белый фосфор) в неорганическом синтезе, наполнитель ламп накаливания, компонент намазки коробка при изготовлении спичек. Не ядовит.

Белый фосфор состоит из молекул Р 4 . Мягкий как воск (режется ножом). Плавится и кипит без разложения (t пл 44,14 °С, t кип 287,3 °С, р 1,82 г/см 3). Окисляется на воздухе (зеленое свечение в темноте), при большой массе возможно самовоспламенение. В особых условиях переводится в красный фосфор. Хорошо растворим в бензоле, эфирах, сероуглероде. Не реагирует с водой, хранится под слоем воды. Чрезвычайно химически активен. Проявляет окислительно-восстановительные свойства. Восстанавливает благородные металлы из растворов их солей.

Применяется в производстве Н 3 Р0 4 и красного фосфора, как реагент в органических синтезах, раскислитель сплавов, зажигательное средство. Горящий фосфор следует гасить песком (но не водой!). Чрезвычайно ядовит.

Уравнения важнейших реакций фосфора:

Получение в промышленности фосфора

— восстановление фосфорита раскаленным коксом (песок добавляют для связывания кальция):

Ca 3 (PО4)2 + 5С + 3SiО2 = 3CaSiO3 + 2Р + 5СО (1000 °С)

Пар фосфора охлаждают и получают твердый белый фосфор.

Красный фосфор готовят из белого фосфора (см. выше), в зависимости от условий степень полимеризации n (P n) может быть различной.

Соединения фосфора

Фосфин РН 3 . Бинарное соединение, степень окисления фосфора равна — III. Бесцветный газ с неприятным запахом. Молекула имеет строение незавершенного тетраэдра [: Р(Н) 3 ] (sр 3 -гибридизация). Мало растворим в воде, не реагирует с ней (в отличие от NH 3). Сильный восстановитель, сгорает на воздухе, окисляется в HNО 3 (конц.). Присоединяет HI. Применяется для синтеза фосфорорганических соединений. Сильно ядовит.

Уравнения важнейших реакций фосфина:

Получение фосфина в лаборатории :

СазP2 + 6НСl (разб.) = ЗСаСl + 2РНз

Оксид фосфора (V) P 2 O 5 . Кислотный оксид. Белый, термически устойчивый. В твердом и газообразном состояниях димер Р 4 О 10 со строением из четырех тетраэдров , связанных по трем вершинам (Р — О-P). При очень высоких температурах мономеризуется до P 2 O 5 . Существует также стеклообразный полимер (Р 2 0 5) п. Чрезвычайно гигроскопичен, энергично реагирует с водой, щелочами. Восстанавливается белым фосфором. Отнимает воду у кислородсодержащих кислот.

Применяется как весьма эффективный дегидратирующий агент для осушения твердых веществ, жидкостей и газовых смесей, реагент в производстве фосфатных стекол, катализатор полимеризации алкенов. Ядовит.

Уравнения важнейших реакций оксида фосфора +5:

Получение: сжигание фосфора в избытке сухого воздуха.

Ортофосфорная кислота Н 3 Р0 4 . Оксокислота. Белое вещество, гигроскопичное, конечный продукт взаимодействия P 2 O 5 с водой. Молекула имеет строение искаженного тетраэдра [Р(O)(OН) 3 ] (sр 3 -гибридизадия), содержит ковалентные σ-связи Р — ОН и σ, π-связь Р=O. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворяется в воде (548 г/100 г Н 2 0). Слабая кислота в растворе, нейтрализуется щелочами, не полностью — гидратом аммиака. Реагирует с типичными металлами. Вступает в реакции ионного обмена.

Качественная реакция — выпадение желтого осадка ортофосфата серебра (I). Применяется в производстве минеральных удобрений, для осветления сахарозы, как катализатор в органическом синтезе, компонент антикоррозионных покрытий на чугуне и стали.

Уравнения важнейших реакций ортофосфорной кислоты:

Получение фосфорной кислоты в промышленности:

кипячение фосфоритной руды в серной кислоте:

Ca3(PO4)2 + 3H2SO4 (конц.) = 2Н3РО4 + 3CaSO4

Ортофосфат натрия Na 3 PO 4 . Оксосоль. Белый, гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. Реагируется в растворе с цинком и алюминием.

Вступает в реакции ионного обмена.

Качественная реакция на ион РО 4 3-

— образование желтого осадка ортофосфата серебра(I).

Применяется для устранения «постоянной» жесткости пресной воды, как компонент моющих средств и фотопроявителей, реагент в синтезе каучука. Уравнения важнейших реакций:

Получение: полная нейтрализация Н 3 Р0 4 гидроксидом натрия или по реакции:

Гидроортофосфат натрия Na 2 HPO 4 . Кислая оксосоль. Белый, при умеренном нагревании разлагается без плавления. Хорошо растворим в воде, гидролизуется по аниону. Реагирует с Н 3 Р0 4 (конц.), нейтрализуется щелочами. Вступает в реакции ионного обмена.

Качественная реакция на ион НРО 4 2- — образование желтого осадка ортофосфата серебра (I).

Применяется как эмульгатор при сгущении коровьего молока, компонент пищевых пастеризаторов и фотоотбеливателей.

Уравнения важнейших реакций:

Получение : неполная нейтрализация Н 3 Р0 4 гидроксидом натрия в разбавленном растворе:

2NaOH + Н3РО4 = Na2HPO4 + 2H2O

Дигидроортофосфат натрия NaH 2 PO 4 . Кислая оксосоль. Белый, гигроскопичный. При умеренном нагревании разлагается без плавления. Хорошо растворим в воде, анион Н 2 Р0 4 подвергается обратимой диссоциации. Нейтрализуется щелочами. Вступает в реакции ионного обмена.

Качественная реакция на ион Н 2 Р0 4 — образование желтого осадка ортофосфата серебра(1).

Применяется в производстве стекла, для защиты стали и чугуна от коррозии, как умягчитель воды.

Уравнения важнейших реакций:

Получение: неполная нейтрализация H 3 PО 4 едким натром:

Н3РО4 (конц.) + NaOH (разб.) = NaH2PO4 + H2O

Ортофосфат кальция Са 3(PO 4)2 — Оксосоль. Белый, тугоплавкий, термически устойчивый. Нерастворим в воде. Разлагается концентрированными кислотами. Восстанавливается коксом при сплавлении. Основной компонент фосфоритных руд (апатиты и др.).

Применяется для получения фосфора, в производстве фосфорных удобрений (суперфосфаты), керамики и стекла, осажденный порошок — как компонент зубных паст и стабилизатор полимеров.

Уравнения важнейших реакций:

Фосфорные удобрения

Смесь Са(Н 2 Р0 4) 2 и CaS0 4 называется простым суперфосфатом , Са(Н 2 Р0 4) 2 с примесью СаНР0 4 — двойным суперфосфатом , они легко усваиваются растениями при подкормке.

Наиболее ценные удобрения — аммофосы (содержат азот и фосфор), представляют собой смесь аммонийных кислых солей NH 4 H 2 PO 4 и (NH 4) 2 HPO 4 .

Хлорид фосфора (V) PCI5 . Бинарное соединение. Белый, летучий, термически неустойчивый. Молекула имеет строение тригональной бипирамиды (sp 3 d-гибридизация). В твердом состоянии димер P 2 Cl 10 с ионным строением РСl 4 +[РСl 6 ] — . «Дымит» во влажном воздухе. Весьма реакционноспособный, полностью гидролизуется водой, реагирует со щелочами. Восстанавливается белым фосфором. Применяется как хлорагент в органическом синтезе. Ядовит.

Уравнения важнейших реакций:

Получение: хлорирование фосфора.

Фосфорная кислота H 3 PO 4 является важнейшим промежуточным продуктом в производстве концентрированных фосфорсодержащих удобрений. Кроме того, фосфорная кислота используется в производстве различных технических солей, разнообразных фосфорорганических продуктов, в том числе инсектицидов, полупроводников, активированного угля, ионообменных смол, для создания защитных покрытий на металлах. Очищенная (пищевая) H 3 PO 4 используется в пищевой промышленности, для приготовления кормовых концентратов, фармацевтических препаратов. Фосфорную кислоту получают из сложного, многокомпонентного сырья, при переработке которого образуются многочисленные и разнообразные отходы.

Фосфорная кислота образуется непосредственно при растворении руды, т.е. прямым извлечением, экстракцией соединений фосфора. Отсюда название продукта - экстракционная фосфорная кислота. Из более бедных руд получают термическую фосфорную кислоту. Процесс основан на восстановлении фосфора из природных фосфатов коксом при высоких температурах и дальнейшем получении H 3 PO 4 и з фосфора.

Кислородные кислоты фосфора, представляющие собой продукты гидратации фосфорного ангидрида. Различают ортофосфорную кислоту (обычно называемую фосфорной кислотой) и конденсированные Ф. к. Наиболее изучена и важна ортофосфорная кислота H 3 PO 4 , образующаяся при растворении P 4 O 10 (или P 2 O 5) в воде.

Образует три ряда солей -- фосфатов. При нагревании растворов кислоты происходит её дегидратация с образованием конденсированных фосфорных кислот.

В промышленности ортофосфорную кислоту получают экстракционным (сернокислотным) или термическим способами.

Термический способ основан на сжигании фосфора до фосфорного ангидрида P 4 + 5O 2 P 4 O 10 и гидратации последнего.

Промышленная ортофосфорная кислота -- важнейший полупродукт для производства фосфорных и комплексных удобрений и технических фосфатов, широко используется также для фосфатирование металлов, в качестве катализатора в органическом синтезе. Пищевая фосфорная кислота применяется для приготовления безалкогольных напитков, лекарств, зубных цементов и др.

Технологический процесс производства фосфорной кислоты электротермическим методом может строиться по двум вариантам:

  • --по одноступенчатой схеме, без предварительной конденсации паров фосфора, с непосредственным сжиганием выходящего из стадии восстановления фосфорсодержащего газа (рис.1);
  • --по двухступенчатой схеме, с предварительной конденсацией паров фосфора и последующей переработкой его в фосфорную кислоту (рис. 2.):

Рис. 1

Рис. 2

При окислении фосфора и гидратации оксида фосфора (V) выделяется большое количество тепла, которое для поддержания оптимального теплового режима процесса должно отводиться из системы.

Наиболее распространены циркуляционно-испарительные схемы, в которых охлаждение газов происходит за счет теплообмена с циркулирующей фосфорной кислотой и в результате испарения из нее воды. Подобная технологическая схема установки производительностью 60 тыс. тонн в год 100% -ной кислоты или 2,5 т/час по сжигаемому фосфору, приведена на рис. 3.

Рис. 3 Технологическая схема производства термической фосфорной кислоты двухстадийным методом: 1 - электропечь, 2 - бункер шихты, 3 - газоотсекатель, 4, 14 - электрофильтры, 5 -горячий конденсатор, 6 - холодный конденсатор, 7, 8 - сборник жидкого фосфора, 9 -отстойник жидкого фосфора, 10 - башня сгорания, 11, 13 - холодильники, 12 - башня гидратации, 15 - сборник фосфорной кислоты

В трехфазную электропечь РКЗ-72 Ф (рудотермическая, круглая, закрытая, мощностью 72 MB. А, фосфорная) с самоспекающимися анодами 1 поступает из бункера 2 шихта, состоящая из фосфата, оксида кремния (кварцита) и кокса. Выходящий из печи газ, содержащий 6--10% фосфора, проходит через газоотсекатель 3 в электрофильтр 4, где из него извлекается пыль. Очищенный газ направляется в конденсаторы - промыватели - горячий 5 и холодный 6, охлаждаемые разбрызгиваемой в них водой, которая циркулирует по замкнутому контуру. Сконденсировавшийся жидкий фосфор собирается в сборниках 7 и 8, откуда поступает в отстойник 9.

Степень конденсации фосфора из газа достигает 0,995. Выходящий из конденсаторов газ, содержащий до 85% об. оксида углерода используется в качестве топлива или сжигается. Шлаки, скапливающиеся в нижней части печи 1, непрерывно скачиваются и используются в производстве цемента и других строительных материалов. Из отстойника 9 расплавленный фосфор подается в башню сгорания 10, где распыляется форсунками в токе воздуха. В башню для охлаждения подается циркуляционная фосфорная кислота, охлаждаемая предварительно в холодильнике 11, часть ее в виде 75%-ной фосфорной кислоты, отводится в качестве продукционной и поступает на склад. Для пополнения в систему вводится необходимое количество воды. Из башни сгорания газ при температуре 100°С поступает в башню гидратации-охлаждения 12, орошаемую фосфорной кислотой, где заканчивается процесс гидратации. За счет орошения температура фосфорной кислоты на выходе снижается до 40 - 45°С. Циркулирующая в башне гидратации кислота охлаждается в холодильнике 13. Из башни гидратации 12 газ направляется в электрофильтр 14. Сконденсировавшаяся в нем из тумана фосфорная кислота поступает в сборник 15, а отходящие газы выбрасываются в атмосферу.

Основными аппаратами в производстве термической фосфорной кислоты являются башня сгорания (сжигания) и башня гидратации.

Башня сгорания полая, имеет коническую форму, диаметр около 4 м и высота около 14 м. Крышка башни охлаждается водой и имеет форсунку для распыления фосфора. Башня гидратации выполнена в виде цилиндра высотой 15 м и диаметром 3 м и содержит насадку из колец Рашига и три яруса форсунок для распыления кислоты.

Технологический схема установки мощностью 60 тысяч т в год 100%-ной H3PO4 приведена на рис. 4. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.


Рис. 4 Циркуляционная двухбашенная схема производства термодинамически H3PO4, где 1 - сборник кислой воды; 2 - хранилище фосфора; 3,9 - циркуляционные сборники; 4,10 - погружные насосы; 5,11 - пластинчатые теплообменники; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации; 12 - электрофильтр; 13 - вентилятор

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2* 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4* 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорная кислота.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соединение Fe, Al, Mg, карбонатов и органическое веществ непригодны для производства фосфорной кислоты

воды , а не с др. фосфат-анионами. В р-рах фосфорной кислоты имеет место обмен атомами кислорода между группами PO 4 и водой .

H 3 PO 4 - сильная к-та, K 1 7,1·10 -3 (рК а 2,12), K 2 6,2·10 -8 (рК а 7,20), K 3 5,0·10 -13 (рК а 12,32); значения K 1 и K 2 зависят от т-ры. Диссоциация по первой ступени экзотермична, по второй и третьей - эндотермична. Фазовая диаграмма системы H 3 PO 4 - H 2 O приведена на рис. 2. Максимум кривой кристаллизации - при т-ре 302,4 К и содержании H 3 PO 4 91,6% (твердая фаза - гемигидрат). В табл. приведены св-ва р-ров фосфорной кислоты .

ХАРАКТЕРИСТИКА ВОДНЫХ РАСТВОРОВ H 3 PO 4

T. затв., 0 C

T. кип., 0 C

кДж/(кг·К)

Па ·с (25 0 C)

Уд. электрич. проводимость, См/м (25 0 C)

H 3 PO 4

P 2 O 5

5

3,62

0,8

100,10

4,0737

0,0010

10,0

3129,1

10

7,24

2,10

100,20

3,9314

0,0011

18,5

3087,7

20

14,49

6,00

100,80

3,6467

0,0016

18,3

2986,4

30

21,73

11,80

101,80

3,3411

0,0023

14,3

2835,7

40

28,96

21,90

103,90

3,0271

0,0035

11,0

2553,1

50

36,22

41,90

104,00

2,7465

0,0051

8,0

2223,8

60

43,47

76,9

114,90

2,4995

0,0092

7,2

1737,1

70

50,72

43,00

127,10

2,3278

0,0154

6,3

1122,6

75

54,32

17,55

135,00

2,2692

0,0200

5,8

805,2

Ф осфорная кислота при нормальных условиях малоактивна и реагирует лишь с карбонатами , гидроксидами и нек-рыми металлами . При этом образуются одно-, двух- и трехзамещенные фосфаты (см. Фосфаты неорганические). При нагр. выше 80 0 C реагирует даже с неактивными оксидами , кремнеземом и силикатами . При повышенных т-рах фосфорная кислота- слабый окислитель для металлов . При действии на металлич. пов-сть р-ром фосфорной кислоты с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагр. теряет воду с образованием последовательно пиро- и метафосфорных к-т:

Фосфолеум (жидкий фосфорный ангидрид , суперфосфорная к-та) включает к-ты, содержащие от 72,4 до 88,6% P 2 O 5 , и представляет собой равновесную систему, состоящую из орто-, пиро-, Триполи-, тетраполи- и др. фосфорных к-т (см. Фосфаты конденсированные). При разбавлении суперфосфорной к-ты водой выделяется значит. кол-во тепла, и полифосфорные к-ты быстро переходят в ортофосфорную.



От др. фосфорных к-т H 3 PO 4 можно отличить по р-ции с AgNO 3 - выпадает желтый осадок Ag 3 PO 4 . Остальные фосфорные к-ты образуют белые осадки.

Получение. Фосфорную кислоту в лаб. условиях легко получить окислением фосфора 32%-ным р-ром азотной к-ты:

В пром-сти фосфорную кислоту получают термическим и экстракционным способами.

Термич. способ (позволяет производить наиб. чистую фосфорную кислоту) включает осн. стадии: сжигание (окисление) элементного фосфора в избытке воздуха , гидратацию и абсорбцию полученного P 4 O 10 (см. Фосфора оксиды), конденсацию фосфорной кислоты и улавливание тумана из газовой фазы. Существуют два способа получения P 4 O 10: окисление паров P (в пром-сти используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в пром. условиях определяется т-рой в зоне окисления , диффузией компонентов и др. факторами. Вторую стадию получения термич. фосфорной кислоты- гидратацию P 4 O 10 - осуществляют абсорбцией к-той (водой) либо взаи-мод. паров P 4 O 10 с парами воды . Гидратация (P 4 O 10 + 6H 2 O 4H 3 PO 4) протекает через стадии образования полифосфорных к-т. Состав и концентрация образующихся продуктов зависят от т-ры и парциального давления паров воды .

Все стадии процесса м. б. совмещены в одном аппарате, кроме улавливания тумана, к-рое всегда производят в отдельном аппарате. В пром-сти обычно используют схемы из двух или трех осн. аппаратов. В зависимости от принципа охлаждения газов существуют три способа произ-ва термич. фосфорной кислоты : испарительный, циркуляционно-испарительный, теплообмен-но-испарительный. Испарит. системы, основанные на отводе теплоты при испарении воды или разб. фосфорной кислоты , наиб. просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.

Циркуляционно-испарит. системы позволяют совместить в одном аппарате стадии сжигания P, охлаждения газовой фазы циркулирующей к-той и гидратации P 4 O 10 . Недостаток схемы - необходимость охлаждения больших объемов к-ты. Теплообменно-испарит. системы совмещают два способа отвода теплоты: через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы; существенное преимущество системы - отсутствие контуров циркуляции к-ты с насосно-холодильным оборудованием.

На отечеств. предприятиях эксплуатируют технол. схемы с циркуляционно-испарит. способом охлаждения (двухбашен-ная система). Отличит. особенности схемы: наличие допол нит. башни для охлаждения газа , использование в циркуляционных контурах эффективных пластинчатых теплообменников ; применение высокопроизводит. форсунки для сжигания P, обеспечивающей однородное тонкодисперсное распыление струи жидкого P и полное его сгорание без образования низших оксидов .

Технол. схема установки мощностью 60 тыс. т в год 100%-ной H 3 PO 4 приведена на рис. 3. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей к-той. Нагретая в башне к-та охлаждается оборотной водой в пластинчатых теплообменниках . Продукционная к-та, содержащая 73-75% H 3 PO 4 , отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию к-ты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов . Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H 3 PO 4 , охлаждаемой в пластинчатых теплообменниках . Газы из башни гидратации после очистки от тумана H 3 PO 4 в пластинчатом электрофильтре выбрасываются в атмосферу . На 1 т 100%-ной H 3 PO 4 расходуется 320 кг P.


Рис. 3. Циркуляционная двухбашенная схема произ-ва термич. H 3 PO 4: 1 - сборник кислой воды ; 2 - хранилище фосфора ; 3,9 - циркуляционные сборники; 4,10 - по-гружные насосы ; 5,11 - пластинчатые теплообменники ; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации ; 12 - электрофильтр; 13 - вентилятор.

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении прир. фосфатов к-тами (в осн. серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые р-ры, полученные разложением азотной к-той, перерабатывают в комплексные удобрения , разложением соляной к-той - в преципитат .

Сернокислотное разложение фосфатного сырья [в странах СНГ гл. обр. хибинского апатитового концентрата (см. Апатит)и фосфоритов Каратау] - осн. метод получения экстракционной фосфорной кислоты , применяемой для произ-ва конц. фосфорных и комплексных удобрений . Суть метода - извлечение (экстрагирование) P 4 O 10 (обычно используют ф-лу P 2 O 5) в виде H 3 PO 4 . По этому методу прир. фосфаты обрабатывают H 2 SO 4 с послед, фильтрованием полученной пульпы для отделения фосфорной кислоты от осадка сульфата Ca. Часть выделенного осн. фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре , возвращают в процесс экстрагирования (р-р разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7:1 до 3,0:1.

Прир. фосфаты разлагаются по схеме:

Разложению к-тами подвергаются также сопутствующие примеси: кальцит , доломит , сидерит, нефелин , глауконит, каолин и др. минералы . Это приводит к увеличению расхода используемой к-ты, а также снижает извлечение P 2 O 5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH 3 (PO 4) 2 · 2,5H 2 O при концентрациях P 2 O 5 выше 40% (содержание P 4 O 10 обычно дается в пересчете на P 2 O 5) и FePO 4 · 2H 2 O - при более низких концентрациях . Выделяю щийся при разложении карбонатов СО 2 образует в экстракторах стойкую пену ; р-римые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты , а также уменьшают содержание усвояемых форм P 2 O 5 в удобрениях при послед. переработке фосфорной кислоты .

С учетом влияния примесей определены требования к фосфатному сырью, согласно к-рым прир. фосфаты с повышенным содержанием соед. Fe, Al, Mg, карбонатов и орг. в-в непригодны для произ-ва фосфорной кислоты .

В зависимости от т-ры и концентрации фосфорной кислоты в системе CaSO 4 -H 3 PO 4 -H 2 O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P 2 O 5 в виде неразложенных прир. фосфатов , недоотмытой H 3 PO 4 , сокристаллизованных фосфатов разл. металлов и др., поэтому образующиеся сульфаты Ca наз. соотв. фосфогипс, фосфогемигидрат и фосфо-ангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа произ-ва экстракционной фосфорной кислоты : дигидратный, полугидратный (гемигидратный) и ангидрит-ный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.

В СНГ наиб. отработан в пром-сти дигидратный способ, к-рый отличается высоким выходом P 2 O 5 (93-96,5%) в продукционную к-ту; однако относительно низ кая концентрация фосфорной кислоты требует ее послед. упаривания. Осн. стадии процесса: экстракция с внеш. или внутр. циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора , отделение фосфорной кислоты на наливных вакуум-фильтрах . Эффективность процесса определяют в осн.