Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп. Микросхемы-драйверы светодиодов Какими бывают драйверы для светодиодов по типу устройства

Всем привет. Обзор 10вт драйвера светодиода, отличительной особенностью которого является сильная пульсация выходного напряжения, т.к. на входе преобразователя отсутствует электролитический конденсатор. Желательна доработка.

Почему я выбрал именно эти 10-ваттные драйверы, а не другие из десятков предложенных в интернете вариантов, я за прошедшие с момента заказа полтора месяца уже не помню. Никакого обзора данной мелочи делать не планировал, но после того, как получил посылку, решил предостеречь покупателей от покупки подобного драйвера.

Похожий драйвер мощностью 20вт уже рассматривался на MYsku в обзоре , схема тоже схожа, правда в моём случае применена микросхема со встроенным силовым ключом. Уменьшения уровня пульсаций выходного напряжения автор добился установкой дополнительного электролитического конденсатора по выходу сетевого выпрямителя.

Когда я собирался испытать полученные драйверы, мне сразу бросилось в глаза, что отсутствует электролитический конденсатор по выходу сетевого выпрямителя. На выходе драйвера установлен электролитический конденсатор на 50в 100мкф, также в схеме есть небольшой конденсатор по питанию микросхемы преобразователя.

Привожу фотографии драйвера:














Ёмкость плёночного конденсатора на выходе сетевого выпрямителя составляет 0,22мкф, но этот конденсатор предназначен скорее для устранения высокочастотной пульсации в цепях питания преобразователя, уменьшая испускаемые драйвером помехи, чем для фильтрации пульсаций частотой 100Гц выпрямленного сетевого напряжения.

Это напомнило мне схему электронного трансформатора для питания 12-вольтовых галогенных ламп. Такие трансформаторы продаются в электротоварах и имеют мощность от 40 до 150вт, и достаточно недороги. Построены они на простейшей двухтактной автогенераторной схеме, и также не имеют сколь-либо значительного фильтрующего конденсатора по выходу сетевого выпрямителя. Таким образом, при переходе сетевого напряжения через ноль, напряжение на выходе сетевого выпрямителя снижается вплоть до срыва автогенерации, и напряжение на выходе электронного трансформатора кратковременно исчезает. Но для галогенных ламп, обладающих значительной инерционностью, не имеет значения, что высокочастотное выходное напряжение промодулировано немного искажёнными половинками синусоиды с частотой 100гц. Вот примерная схема электронного транса:

Применяя электронный транс в своих поделках, и стремясь уменьшить уровень пульсаций на выходе мостового выпрямителя, которым я нагружал выход электронного трансформатора, я пытался подключить на выход сетевого выпрямителя дополнительный электролитический конденсатор ёмкостью в 10-20мкф. Но эта затея провалилась, дополнительный конденсатор отрицательно влиял на работу этой простой схемы, автогенератор выходил из под контроля, и сначала сгорал защитный резистор, а потом и предохранитель, который я ставил вместо резистора. Не знаю, отчего это происходило, то ли с увеличением конденсатора увеличилось среднее значение напряжения питания схемы преобразователя, то ли для данной схемы важна была кратковременная просадка напряжения питания до срыва автогенерации, то ли возникал ещё какой-либо нештатный режим, например однотактная автогенерация… Впрочем, тогда я не стал глубоко копать, а сейчас, видя схему, понимаю, что надо было попутно корректировать цепочку R2, R3, D6…

И вот я больше чем через 10 лет встречаю совершенно другое, но в то же время похожее схемное решение, в котором ради экономии отсутствует электролитический конденсатор по выходу сетевого выпрямителя… Забавно… Правда, включение дополнительного электролитического конденсатора не привело к фейерверкам, как когда-то в случае с электронным трансформатором, что очень радует.

Установленный на выходе драйвера конденсатор ёмкостью 100мкф не способен при токе нагрузки в 800-900мА сколь либо существенно сгладить пульсации частотой 100гц. Также автор упомянутого выше обзора указывает на незначительное уменьшение величины пульсаций светового потока при многократном увеличении ёмкости конденсатора на выходе драйвера, зато дополнительный конденсатор на выходе сетевого выпрямителя уменьшил пульсации в 10 раз. Поэтому я сразу был настроен на установку дополнительного конденсатора.

Кстати, измеренный автором упомянутого обзора уровень пульсаций светового потока очень мал для такой казалось бы «ужасной» схемы, и заслуга в этом как схемы драйвера с значительным запасом по минимальному входному напряжению, так и самих светодиодов. Если вместо такой нелинейной нагрузки, как светодиоды, подключить к драйверу, например, лампочку или резистивную нагрузку, уровень пульсаций выходного напряжения становится в разы больше, не 10%, как уровень пульсаций светового потока, а порядка 30-50% и сильно зависит от сетевого напряжения и тока нагрузки. Электронный трансформатор с автогенератором имеет такие же пульсации на выходе (все 100%), как и на входе. Импульсный же преобразователь с ШИМом при значительных пульсациях на входе выдаёт на выход куда более стабильное напряжение, со значительно меньшим провалом в момент, когда напряжение на выходе выпрямителя падает ниже минимально допустимого для схемы (порядка 80в). Регулировал входное напряжение драйвера ЛАТРом, уровень пульсаций резко увеличивается при снижении напряжения.

Самое первое включение драйвера я провёл без дополнительного конденсатора, в первый раз драйвер включился с задержкой примерно на 2-3сек, видимо должен был зарядиться конденсатор по питанию микросхемы, при последующих включениях задержки не было.

Испытание драйвера проводил 10-ваттным светодиодом, сначала без внешнего конденсатора. Напряжение на светодиоде было 11,46в при токе 0,85А. Но, учитывая значительную пульсацию выходного напряжения, я не очень надеялся на правдивые показания измерительных приборов.

Намного больше я стал доверять измерениям, когда припаял к драйверу первый попавшийся мне на глаза подходящий электролитический конденсатор:

При подключенном конденсаторе я получил следующие данные: напряжение на светодиоде 11,36в при токе 0,8а. При этом светодиод потреблял мощность 9,08вт, что, в принципе, меньше заявленной продавцом мощности драйвера, но не настолько мало, чтобы делать из этого проблему.

При работе драйвер нагревается, температура микросхемы порядка 62 градусов, трансформатора - около 70 градусов, самые горячие элементы - импульсные диоды на выходе преобразователя - около 85 градусов. Ну и для сравнения светодиод на радиаторе сам греется примерно до 72 градусов. Без внешнего конденсатора микросхема работает в более тяжёлом режиме, и нагревается сильнее, примерно до 72 градусов.

Пульсации напряжения не измерял (нечем), а приблизительно оценивал при помощи старинного ещё лампового осциллографа ЛО-70, у него сбоит синхронизация, поэтому сфотографировать картинку проблематично. Очевидны изменения уровня пульсаций при подключении внешнего кондёра, снижении входного напряжения, подключения пассивной нагрузки. Помех на радио и ТВ драйвер не наводит.

У продавца выставлена на продажу линейка драйверов светодиодов мощностью от 3 до 100вт. При этом электролитические конденсаторы по выходу сетевого выпрямителя имеются только у версий на 3 и 20вт, остальные такие же «пульсирующие» (см. наличие конденсатора по входу преобразователя):










Конечно, далеко не все разбираются в схемотехнике и могут по фото драйвера заключить, стоит ли его покупать или нет, тем более понять каким уровнем пульсаций выходного напряжения он может обладать. Поэтому хочу предостеречь народ (тех кто не планирует дорабатывать подобные драйверы установкой дополнительного конденсатора) от применения таких драйверов для освещения жилых помещений, особенно если напряжение в сети часто ниже номинального.

Стандартная схема драйвера светодиодов РТ4115 представлена на рисунке ниже:

Напряжение питания должно быть по-крайней мере на 1.5-2 вольта выше, чем суммарное напряжение на светодиодах. Соответственно, в диапазоне питающих напряжений от 6 до 30 вольт, к драйверу можно подключить от 1 до 7-8 светодиодов.

Максимальное напряжение питания микросхемы 45 В , но работа в таком режиме не гарантируется (лучше обратите внимание на аналогичную микросхему ).

Ток через светодиоды имеет треугольную форму с максимальным отклонением от среднего значения ±15%. Средний ток через светодиоды задается резистором и рассчитывается по формуле:

I LED = 0.1 / R

Минимально допустимое значение R = 0.082 Ом, что соответствует максимальному току 1.2 А.

Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R с максимальным отклонением от номинала 1%.

Итак, для включения светодиода на постоянную яркость вывод DIM оставляем висеть в воздухе (он внутри PT4115 подтянут к уровню 5В). При этом ток на выходе определяется исключительно сопротивлением R.

Если между выводом DIM и "землей" включить конденсатор, мы получим эффект плавного зажигания светодиодов. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем дольше будет разгораться светильник.

Для справки: каждый нанофарад емкости увеличивает время включения на 0.8 мс.

Если же требуется сделать диммируемый драйвер для светодиодов с регулировкой яркости от 0 до 100%, то можно прибегнуть к одному из двух способов:

  1. Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0 до 6В. При этом регулировка яркости от 0 до 100% осуществляется при напряжении на выводе DIM от 0.5 до 2.5 вольт. Увеличение напряжения выше 2.5 В (и вплоть до 6 В) никак не влияет на ток через светодиоды (яркость не меняется). Напротив, уменьшение напряжения до уровня 0.3В или ниже приводит к отключению схемы и переводу ее в режим ожидания (ток потребления при этом падает до 95 мкА). Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания.
  2. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц, яркость будет определяться коэффициентом заполнения (скважностью импульсов). Например, если высокий уровень будет держаться 1/4 часть периода, а низкий уровень, соответственно, 3/4, то это будет соответствовать уровню яркости в 25% от максимума. Надо понимать, что частота работы драйвера определяется индуктивностью дросселя и ни коем образом не зависит от частоты диммирования.

Схема драйвера светодиодов PT4115 с регулятором яркости постоянным напряжением представлена на рисунке ниже:

Такая схема регулировки яркости светодиодов прекрасно работает благодаря тому, что внутри микросхемы вывод DIM "подтянут" к шине 5В через резистор сопротивлением 200 кОм. Поэтому, когда ползунок потенциометра находится в крайнем нижнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2=2.5В, что соответствует 100%-ой яркости.

Как работает схема

В первый момент времени, при подаче входного напряжения, ток через R и L равен нулю и встроенный в микросхему выходной ключ открыт. Ток через светодиоды начинает плавно нарастать. Скорость нарастания тока зависит от величины индуктивности и напряжения питания. Внутрисхемный компаратор сравнивает потенциалы до и после резистора R и, как только разница составит 115 мВ, на его выходе появляется низкий уровень, который закрывает выходной ключ.

Благодаря запасенной в индуктивности энергии, ток через светодиоды не исчезает мгновенно, а начинает плавно уменьшаться. Постепенно уменьшается и падение напряжения на резисторе R. Как только оно достигнет величины в 85 мВ, компаратор снова выдаст сигнал на открытие выходного ключа. И весь цикл повторяется сначала.

Если необходимо уменьшить размах пульсаций тока через светодиоды, допускается подключить конденсатор параллельно светодиодам. Чем больше будет его емкость, тем сильнее будет сглажена треугольная форма тока через светодиоды и тем более она станет похожа на синусоидальную. Конденсатор не влияет на рабочую частоту или эффективность работы драйвера, но увеличивает время установления заданного тока через светодиод.

Важные нюансы сборки

Важным элементом схемы является конденсатор C1. Он не просто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия выходного ключа. Без C1 запасенная в дросселе энергия поступит через диод Шоттки на шину питания и может спровоцировать пробой микросхемы. Поэтому если включить драйвер без шунтирующего питание конденсатора, микросхема почти гарантированно накроется. И чем больше индуктивность дросселя, тем больше шансов спалить микруху.

Минимальная емкость конденсатора C1 - 4.7 мкФ (а при питании схемы пульсирующим напряжением после диодного моста - не менее 100 мкФ).

Конденсатор должен располагаться как можно ближе к микросхеме и иметь как можно более низкое значение ESR (т.е. танталовые кондеры приветствуются).

Также очень важно ответственно подойти к выбору диода. Он должен иметь малое прямое падение напряжения, короткое время восстановления во время переключения и стабильность параметров при повышении температуры p-n перехода, чтобы не допустить увеличения тока утечки.

В принципе, можно взять и обычный диод, но лучше всего под эти требования подходят диоды Шоттки. Например, STPS2H100A в SMD-исполнении (прямое напряжение 0.65V, обратное - 100V, ток в импульсе до 75А, рабочая температура до 156°C) или FR103 в корпусе DO-41 (обратное напряжение до 200V, ток до 30А, температура до 150°C). Очень неплохо себя показали распространенные SS34 , которые можно надергать из старых плат или купить целую пачку за 90 рублей .

Индуктивность дросселя зависит от выходного тока (см. таблицу ниже). Неверно выбранное значение индуктивности может привести к увеличению рассеиваемой на микросхеме мощности и выходу за пределы рабочего температурного режима.

При перегреве выше 160°C микросхема автоматически выключится и будет находиться в выключенном состоянии до тех пор пока не остынет до 140°C, после чего запустится автоматически.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.

Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.

Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.

Дроссель должен располагаться как можно ближе к выводу SW, в идеале - подключен напрямую к нему.

И, наконец, самый прецизионный элемент схемы драйвера светодиода - резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.

К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

  • R посл = R 1 +R 2 +…+R n ;
  • R пар = (R 1 xR 2) / (R 1 +R 2).

Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

R = 0.1 / I LED [A]

Типовая схема включения выглядит так:

Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать ).

SN3350

SN3350 - очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

R = 0.1 / I LED

Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

Типовая схема включения:

Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

ZXLD1350

Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

Вот главные отличия:

  • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
  • максимальный ток нагрузки - 350 мА;
  • сопротивление выходного ключа в открытом состоянии - 1.5 - 2 Ома;
  • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
  • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

R = 0.1 / I LED

Минимальное сопротивление резистора - 0.27 Ом.

Типовая схема включения ничем не отличается от своих собратьев:

Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае - мгновенно выйдет из строя.

Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему .

Стоимость микросхемы неоправданно высокая (), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

QX5241

QX5241 - это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку "5241a" (см. фото).

В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

Вот некоторые ключевые характеристики LED-драйвера на QX5241:

  • максимальный выходной ток - 2.5 А;
  • КПД до 96%;
  • максимальная частота диммирования - 5 кГц;
  • максимальная рабочая частота преобразователя - 1 МГц;
  • точность стабилизации тока через светодиоды - 1%;
  • напряжение питания - 5.5 - 36 Вольт (нормально работает и при 38!);
  • выходной ток рассчитывается по формуле: R = 0.2 / I LED

Более подробно читайте в спецификации (на инглише).

Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше - то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение - до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Работали максимально ярко и эффективно, используются специальные модули - драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора - преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются - проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов - это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто - это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора - это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие - мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт - мощность драйвера;

Р(св), Вт - мощность одного светодиода;

N - количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности - примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные - типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток - высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое - для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс - в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении - с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Напряжение питания - 6-30 В.
  2. Выходной ток - 1,2 А.
  3. Допустимая погрешность при стабилизации тока - не более 5%.
  4. Защита от отключения нагрузки.
  5. Выводы для диммирования.
  6. КПД - 97%.

Обозначение выводов микросхемы:

  1. SW - подключение выходного коммутатора.
  2. GND - отрицательный вывод источников питания и сигнала.
  3. DIM - регулятор яркости.
  4. CSN - датчик входного тока.
  5. VIN - положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо - можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется - корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное - понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции - от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, - потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, - и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), - поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Андрей Повный


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.



Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА, но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.


Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.


Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.